A nanodrug combining CD47 and sonodynamic therapy efficiently inhibits osteosarcoma deterioration

被引:43
作者
Gong, Ming [1 ,2 ]
Huang, Yufeng [1 ,2 ]
Feng, Huixiong [1 ,2 ]
Lin, Jiaming [1 ,2 ]
Huang, Anfei [1 ,2 ]
Hu, Jinxin [1 ,2 ]
Tang, Qinglian [1 ,2 ]
Zhu, Xiaojun [1 ,2 ]
Han, Shisong [3 ]
Lu, Jinchang [1 ,2 ]
Wang, Jin [1 ,2 ]
机构
[1] Sun Yat Sen Univ Canc Ctr, Dept Musculoskeletal Oncol, Guangzhou 510060, Peoples R China
[2] Collaborat Innovat Ctr Canc Med, State Key Lab Oncol Southern China, Guangzhou 510060, Peoples R China
[3] Zhuhai Hosp Affiliated Jinan Univ, Zhuhai Peoples Hosp, Zhuhai Inst Translat Med, Guangdong Prov Key Lab Tumor Intervent Diag & Trea, Zhuhai 519000, Peoples R China
基金
中国国家自然科学基金;
关键词
Sonodynamic therapy; CD47 immune checkpoint; Tumor associated macrophages; Osteosarcoma; Nanodrug; CANCER; MACROPHAGES;
D O I
10.1016/j.jconrel.2023.01.038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Treatments for osteosarcoma (OS) with pulmonary metastases reach a bottleneck with a survival rate of 10-20%. The suppressive tumor associated macrophages(TAMs) and CD47 over-expression greatly lead to the treatment failure. Sonodynamic therapy (SDT) can generate ROS with deep tumor penetration to induce tumor cell apoptosis, which is reported to further induce M1 macrophage polarization. CD47 inhibition combined with SDT to synergistically modulate TAMs may induce superior effects for OS treatment. In this work, for the first time, a biomimetic nanodrug named MPIRx was deveploped by loading IR780 (a sonosensitizer) and RRx-001 (a CD47 inhibitor) in PEG-PCL nanomicelles and then coating with OS cell membranes. After ultrasound activation, the nanodrug significantly inhibited OS proliferation and migration, induced apoptosis and immunogenic cell death in OS cells. Furthermore, MPIRx could guide macrophage migrating towards tumor cells and promote M1-type polarization while increasing the phagocytosis activity of macrophages on OS cells. Ultimately, MPIRx showed good tumor accumulation in vivo and successfully inhibited subcutaneous OS and orthotopic tumor with dete-rioration of pulmonary metastasis. Overall, by creating a local oxidative microenvironment and modulating the TAMs/CD47 in tumor tissue, the MPIRx nanodrug presents a novel strategy for macrophage-related immuno-therapy to successfully eliminate OS and inhibit the intractable pulmonary metastasis.
引用
收藏
页码:68 / 84
页数:17
相关论文
共 42 条
[1]   CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma [J].
Advani, Ranjana ;
Flinn, Ian ;
Popplewell, Leslie ;
Forero, Andres ;
Bartlett, Nancy L. ;
Ghosh, Nilanjan ;
Kline, Justin ;
Roschewski, Mark ;
LaCasce, Ann ;
Collins, Graham P. ;
Thu Tran ;
Lynn, Judith ;
Chen, James Y. ;
Volkmer, Jens-Peter ;
Agoram, Balaji ;
Huang, Jie ;
Majeti, Ravindra ;
Weissman, Irving L. ;
Takimoto, Chris H. ;
Chao, Mark P. ;
Smith, Sonali M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (18) :1711-1721
[2]   Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma [J].
Bernthal, Nicholas M. ;
Federman, Noah ;
Eilber, Frederick R. ;
Nelson, Scott D. ;
Eckardt, Jeffrey J. ;
Eilber, Fritz C. ;
Tap, William D. .
CANCER, 2012, 118 (23) :5888-5893
[3]   Osteosarcoma: ESMO Clinical Recommendations for diagnosis, treatment and follow-up [J].
Bielack, S. ;
Carrle, D. ;
Casali, P. G. .
ANNALS OF ONCOLOGY, 2009, 20 :137-139
[4]   Tumor-Infiltrating Macrophages Are Associated with Metastasis Suppression in High-Grade Osteosarcoma: A Rationale for Treatment with Macrophage Activating Agents [J].
Buddingh, Emilie P. ;
Kuijjer, Marieke L. ;
Duim, Ronald A. J. ;
Buerger, Horst ;
Agelopoulos, Konstantin ;
Myklebost, Ola ;
Serra, Massimo ;
Mertens, Fredrik ;
Hogendoorn, Pancras C. W. ;
Lankester, Arjan C. ;
Cleton-Jansen, Anne-Marie .
CLINICAL CANCER RESEARCH, 2011, 17 (08) :2110-2119
[5]   Rationale and necessity for delivery of RRx-001, a Myc and CD47 antagonist, by intravenous blood mix [J].
Caroen, Scott ;
Oronsky, Bryan ;
Carter, Corey ;
Lybeck, Michelle ;
Oronsky, Arnold ;
Reid, Tony .
EXPERT OPINION ON DRUG DELIVERY, 2020, 17 (06) :741-742
[6]   MYC regulates the antitumor immune response through CD47 and PD-L1 [J].
Casey, Stephanie C. ;
Tong, Ling ;
Li, Yulin ;
Do, Rachel ;
Walz, Susanne ;
Fitzgerald, Kelly N. ;
Gouw, Arvin M. ;
Baylot, Virginie ;
Guetgemann, Ines ;
Eilers, Martin ;
Felsher, Dean W. .
SCIENCE, 2016, 352 (6282) :227-231
[7]   Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy [J].
Chen, Ze ;
Zhao, Pengfei ;
Luo, Zhenyu ;
Zheng, Mingbin ;
Tian, Hao ;
Gong, Ping ;
Gao, Guanhui ;
Pan, Hong ;
Liu, Lanlan ;
Ma, Aiqing ;
Cui, Haodong ;
Ma, Yifan ;
Cai, Lintao .
ACS NANO, 2016, 10 (11) :10049-10057
[8]   Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas [J].
Dancsok, Amanda R. ;
Gao, Dongxia ;
Lee, Anna F. ;
Steigen, Sonja Eriksson ;
Blay, Jean-Yves ;
Thomas, David M. ;
Maki, Robert G. ;
Nielsen, Torsten O. ;
Demicco, Elizabeth G. .
ONCOIMMUNOLOGY, 2020, 9 (01)
[9]   PCL-PEG copolymer based injectable thermosensitive hydrogels [J].
Dethe, Mithun Rajendra ;
Prabakaran, A. ;
Ahmed, Hafiz ;
Agrawal, Mukta ;
Roy, Upal ;
Alexander, Amit .
JOURNAL OF CONTROLLED RELEASE, 2022, 343 :217-236
[10]   Phagocytosis checkpoints as new targets for cancer immunotherapy [J].
Feng, Mingye ;
Jiang, Wen ;
Kim, Betty Y. S. ;
Zhang, Cheng Cheng ;
Fu, Yang-Xin ;
Weissman, Irving L. .
NATURE REVIEWS CANCER, 2019, 19 (10) :568-586