Signal Peptide Efficiency: From High-Throughput Data to Prediction and Explanation

被引:25
作者
Grasso, Stefano [1 ,2 ,3 ]
Dabene, Valentina [4 ,5 ]
Hendriks, Margriet M. W. B. [2 ]
Zwartjens, Priscilla [2 ]
Pellaux, Rene [5 ]
Held, Martin [4 ]
Panke, Sven [4 ]
van Dijl, Jan Maarten [1 ]
Meyer, Andreas [5 ]
van Rij, Tjeerd [2 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Med Microbiol, NL-9700 RB Groningen, Netherlands
[2] DSM Biotechnol Ctr, NL-2613 Delft, Netherlands
[3] Lesaffre Int, 101 Rue Menin, F-59700 Marcq En Baroeul, France
[4] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[5] FGen AG, CH-4057 Basel, Switzerland
来源
ACS SYNTHETIC BIOLOGY | 2023年
基金
欧盟地平线“2020”;
关键词
signal peptide; protein secretion; amylase; Bacillus subtilis; nanoliter reactors; secretion efficiency; MALTOSE-BINDING-PROTEIN; BACILLUS-SUBTILIS; POSITIVE CHARGE; SECRETION; EXPORT; SEQUENCE; MEMBRANE; TRANSLOCATION; CONSTRUCTION; OPTIMIZATION;
D O I
10.1021/acssynbio.2c00328
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The passage of proteins across biological mem-branes via the general secretory (Sec) pathway is a universally conserved process with critical functions in cell physiology and important industrial applications. Proteins are directed into the Sec pathway by a signal peptide at their N-terminus. Estimating the impact of physicochemical signal peptide features on protein secretion levels has not been achieved so far, partially due to the extreme sequence variability of signal peptides. To elucidate relevant features of the signal peptide sequence that influence secretion efficiency, an evaluation of similar to 12,000 different designed signal peptides was performed using a novel miniaturized high-throughput assay. The results were used to train a machine learning model, and a post-hoc explanation of the model is provided. By describing each signal peptide with a selection of 156 physicochemical features, it is now possible to both quantify feature importance and predict the protein secretion levels directed by each signal peptide. Our analyses allow the detection and explanation of the relevant signal peptide features influencing the efficiency of protein secretion, generating a versatile tool for the de novo design and in silico evaluation of signal peptides.
引用
收藏
页码:390 / 404
页数:15
相关论文
共 93 条
[1]   Identification of stress response proteins through fusion of machine learning models and statistical paradigms [J].
Alzahrani, Ebraheem ;
Alghamdi, Wajdi ;
Ullah, Malik Zaka ;
Khan, Yaser Daanial .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]   Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology [J].
Anne, Jozef ;
Economou, Anastassios ;
Bernaerts, Kristel .
PROTEIN AND SUGAR EXPORT AND ASSEMBLY IN GRAM-POSITIVE BACTERIA, 2017, 404 :267-308
[3]   Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets [J].
Aranha, Michelle P. ;
Spooner, Catherine ;
Demerdash, Omar ;
Czejdo, Bogdan ;
Smith, Jeremy C. ;
Mitchell, Julie C. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2020, 1864 (04)
[4]   StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach [J].
Arif, Muhammad ;
Ahmed, Saeed ;
Ge, Fang ;
Kabir, Muhammad ;
Khan, Yaser Daanial ;
Yu, Dong-Jun ;
Thafar, Maha .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 220
[5]   SignalP 5.0 improves signal peptide predictions using deep neural networks [J].
Armenteros, Jose Juan Almagro ;
Tsirigos, Konstantinos D. ;
Sonderby, Casper Kaae ;
Petersen, Thomas Nordahl ;
Winther, Ole ;
Brunak, Soren ;
von Heijne, Gunnar ;
Nielsen, Henrik .
NATURE BIOTECHNOLOGY, 2019, 37 (04) :420-+
[6]   Computational Methods and Tools in Antimicrobial Peptide Research [J].
Aronica, Pietro G. A. ;
Reid, Lauren M. ;
Desai, Nirali ;
Li, Jianguo ;
Fox, Stephen J. ;
Yadahalli, Shilpa ;
Essex, Jonathan W. ;
Verma, Chandra S. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (07) :3172-3196
[7]   MUTATIONS WHICH ALTER THE FUNCTION OF THE SIGNAL SEQUENCE OF THE MALTOSE BINDING-PROTEIN OF ESCHERICHIA-COLI [J].
BEDOUELLE, H ;
BASSFORD, PJ ;
FOWLER, AV ;
ZABIN, I ;
BECKWITH, J ;
HOFNUNG, M .
NATURE, 1980, 285 (5760) :78-81
[8]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[9]   Pathway specificity for a Delta pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein [J].
Bogsch, E ;
Brink, S ;
Robinson, C .
EMBO JOURNAL, 1997, 16 (13) :3851-3859
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32