Magneto-Optical Spin Hall Effect Regulation at Terahertz Frequencies Based on Graphene-Gold Heterojunction

被引:0
作者
Luo, Li [1 ]
Guo, Junlin [1 ]
Peng, Sui [2 ]
Liu, Bo [2 ]
Wang, Yuting [1 ]
Liu, Xiao [1 ]
机构
[1] Chengdu Univ Informat Technol, Informat Mat & Device Applicat, Key Lab Sichuan Prov Univ, Chengdu 610225, Peoples R China
[2] Chengdu Adv Met Mat Ind Technol Res Inst Ltd Co, Chengdu 610300, Peoples R China
基金
中国国家自然科学基金;
关键词
magneto-optical spin Hall effect; graphene-gold heterojunction; terahertz frequency; transverse shift; TRANSMITTED LIGHT; REFLECTED LIGHT; ENHANCEMENT;
D O I
10.3390/cryst13010078
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this paper, we theoretically consider the magneto-optical spin Hall effect of light (MOSHEL) in a graphene-gold heterojunction structure at terahertz frequencies, and determine the maximum value of the transverse shift of the spin Hall effect of light (SHEL) in the designed structure by varying the terahertz frequency, the thickness of the metal layer, the Fermi energy level of the graphene, and the magnetic induction density. When the terahertz frequency was 1.2 THz, the metal layer thickness 50 nm, the Fermi level 0.2 eV, and the magnetic induction density B was 10 T, the SHEL shifts of left-handed circularly polarized (LHCP) and right-handed circularly polarized (RHCP) components was greatest at the critical angle (58 degrees), with as value of 498 mu m, 1000 times larger than the visible light. At this point, graphene exhibited a significant magneto-optical effect, dramatically enhancing the splitting extrema of LHCP and RHCP. This structure will provide possibilities for enhancement of the transverse shift and efficient regulation of the optical spin Hall effect within the terahertz range.
引用
收藏
页数:13
相关论文
共 26 条
  • [1] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [2] Side-jump mechanism for the Hall effect of ferromagnets
    Berger, L.
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (11): : 4559 - 4566
  • [3] Geometrodynamics of spinning light
    Bliokh, Konstantin Y.
    Niv, Avi
    Kleiner, Vladimir
    Hasman, Erez
    [J]. NATURE PHOTONICS, 2008, 2 (12) : 748 - 753
  • [4] Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet
    Bliokh, KY
    Bliokh, YP
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (07)
  • [5] Coutaz JL, 2018, PRINCIPLES OF TERAHERTZ TIME-DOMAIN SPECTROSCOPY, P1
  • [6] Dexheimer S. L., 2008, TERAHERTZ SPECTROSCO
  • [7] Magneto-optical conductivity in graphene
    Gusynin, V. P.
    Sharapov, S. G.
    Carbotte, J. P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (02)
  • [8] Observation of the spin Hall effect of light via weak measurements
    Hosten, Onur
    Kwiat, Paul
    [J]. SCIENCE, 2008, 319 (5864) : 787 - 790
  • [9] Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal
    Kaihara, Terunori
    Ando, Takeaki
    Shimizu, Hiromasa
    Zayets, Vadym
    Saito, Hidekazu
    Ando, Koji
    Yuasa, Shinji
    [J]. OPTICS EXPRESS, 2015, 23 (09): : 11537 - 11555
  • [10] Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystals with graphene
    Li, Jie
    Tang, Tingting
    Luo, Li
    Yao, Jianquan
    [J]. CARBON, 2018, 134 : 293 - 300