Haematopoietic stem cell quiescence exposed using mitochondrial membrane potential

被引:2
作者
Ghaffari, Saghi [1 ,2 ]
机构
[1] Icahn Sch Med Mt Sinai, Black Family Stem Cell Inst, Tisch Canc Inst, Dept Cell Dev & Regenerat Biol,Dev & Stem Cell Bio, New York, NY USA
[2] Icahn Sch Med Mt Sinai, Dept Cell Dev & Regenerat Biol, New York, NY 10029 USA
关键词
ageing; dormancy; haematopoietic stem cell; label retention; lysosome; mitochondria; mitochondrial membrane potential; quiescence; METABOLISM; HOMEOSTASIS; HISTORY;
D O I
10.1097/MOH.0000000000000746
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Purpose of reviewQuiescence is a fundamental property of haematopoietic stem cells (HSCs). Despite the importance of quiescence in predicting the potency of HSCs, tools that measure routinely the degree of quiescence or select for quiescent HSCs have been lacking. This Commentary discusses recent findings that address this fundamental gap in the HSC toolbox.Recent findingsHighly purified, phenotypically-defined HSCs are heterogeneous in their mitochondrial membrane potential (MMP). The lowest MMP subsets are enriched in greatly quiescent HSCs with the highest potency within the purified HSC population. MMP provides an intrinsic probe to select HSC subsets with unique cell cycle properties and distinct stem cell potential. Using this approach, new and unanticipated metabolic properties of quiescent HSCs' exit have been discovered. This methodology may improve the mechanistic understanding, of HSCs' exit from and entry to, quiescence.Selecting HSCs using MMP is likely to lead to discoveries of new HSC properties, may improve the ex vivo maintenance of HSCs and has implications for the clinic, including for improving HSC transplantations.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [31] Longevity and mitochondrial membrane potential
    Knorre, D. A.
    Severin, F. F.
    [J]. BIOCHEMISTRY-MOSCOW, 2012, 77 (07) : 793 - 794
  • [32] Longevity and mitochondrial membrane potential
    D. A. Knorre
    F. F. Severin
    [J]. Biochemistry (Moscow), 2012, 77 : 793 - 794
  • [33] Roles of Mitochondrial Membrane Potential
    Zorova, L. D.
    Popkov, V. A.
    Plotnikov, E. J.
    Silachev, D. N.
    Pevzner, I. B.
    Yankauskas, S. S.
    Zorov, S. D.
    Babenko, V. A.
    Zorov, D. B.
    [J]. BIOLOGICHESKIE MEMBRANY, 2017, 34 (06): : 93 - 100
  • [34] HYPOTHESIS: Do LRIG Proteins Regulate Stem Cell Quiescence by Promoting BMP Signaling?
    Herdenberg, Carl
    Hedman, Hakan
    [J]. STEM CELL REVIEWS AND REPORTS, 2023, 19 (01) : 59 - 66
  • [35] Mitochondrial Function in Muscle Stem Cell Fates
    Bhattacharya, Debasmita
    Scime, Anthony
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [36] Single Cell Effects of Photobiomodulation on Mitochondrial Membrane Potential and Reactive Oxygen Species Production in Human Adipose Mesenchymal Stem Cells
    Pan, Li-Chern
    Nguyen-Le-Thanh Hang
    Colley, Mamadi M. S.
    Chang, Jungshan
    Hsiao, Yu-Cheng
    Lu, Long-Sheng
    Li, Bing-Sian
    Chang, Cheng-Jen
    Yang, Tzu-Sen
    [J]. CELLS, 2022, 11 (06)
  • [37] Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption
    Vasan, Karthik
    Clutter, Matt
    Fernandez Dunne, Sara
    George, Mariam D.
    Luan, Chi-Hao
    Chandel, Navdeep S.
    Martinez-Reyes, Inmaculada
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [38] Mitochondrial dynamics when mitochondrial toxic chemicals exposed in 3D cultured mouse embryonic stem cell
    Ahn, Changhwan
    Jeong, SunHwa
    Jeung, Eui-Bae
    [J]. TOXICOLOGICAL RESEARCH, 2022, 39 (2) : 239 - 249
  • [39] Mitochondrial dynamics when mitochondrial toxic chemicals exposed in 3D cultured mouse embryonic stem cell
    Changhwan Ahn
    SunHwa Jeong
    Eui-Bae Jeung
    [J]. Toxicological Research, 2023, 39 : 239 - 249
  • [40] Protein S Regulates Neural Stem Cell Quiescence and Neurogenesis
    Zelentsova, Katya
    Talmi, Ziv
    Abboud-Jarrous, Ghada
    Sapir, Tamar
    Capucha, Tal
    Nassar, Maria
    Burstyn-Cohen, Tal
    [J]. STEM CELLS, 2017, 35 (03) : 679 - 693