Packing convex polygons in minimum-perimeter convex hulls

被引:3
作者
Kallrath, Josef [1 ]
Romanova, Tatiana [2 ,3 ]
Pankratov, Alexander [2 ,3 ]
Litvinchev, Igor [4 ]
Infante, Luis [4 ]
机构
[1] Univ Florida, Dept Astron, Gainesville, FL 32611 USA
[2] Natl Acad Sci Ukraine, Dept Math Modeling & Optimal Design, Inst Mech Engn Problems, Kharkiv, Ukraine
[3] Kharkiv Natl Univ Radioelect, Kharkiv, Ukraine
[4] Nuevo Leon State Univ UANL, Fac Mech & Elect Engn, Grad Program Syst Engn, Monterrey, Mexico
基金
新加坡国家研究基金会;
关键词
Global optimization; Non-convex nonlinear programming; Polygon packing problem; Convex hull; Perimeter minimization; Non-overlap constraints; Computational geometry; CIRCLES;
D O I
10.1007/s10898-022-01194-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The problem of packing a given set of freely translated and rotated convex polygons in a minimum-perimeter convex polygon (in particular the minimum-perimeter convex hull) is introduced. A mathematical model of the problem using the phi-function technique is provided. Problem instances with up to 6 convex polygons are solved by the global NLP solver BARON to get a minimum-perimeter convex hull. Numerical experiments for larger instances are reported using the local NLP solver IPOPT.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 43 条
  • [1] Aligning Two Convex Figures to Minimize Area or Perimeter
    Ahn, Hee-Kap
    Cheong, Otfried
    [J]. ALGORITHMICA, 2012, 62 (1-2) : 464 - 479
  • [2] Approximating Minimum-Area Rectangular and Convex Containers for Packing Convex Polygons
    Alt, Helmut
    de Berg, Mark
    Knauer, Christian
    [J]. ALGORITHMS - ESA 2015, 2015, 9294 : 25 - 34
  • [3] Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset
    Araujo, Luiz J. P.
    Ozcan, Ender
    Atkin, Jason A. D.
    Baumers, Martin
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2019, 57 (18) : 5920 - 5934
  • [4] How good are convex hull algorithms?
    Avis, D
    Bremner, D
    Seidel, R
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (5-6): : 265 - 301
  • [5] Optimal clustering of a pair of irregular objects
    Bennell, J.
    Scheithauer, G.
    Stoyan, Y.
    Romanova, T.
    Pankratov, A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 497 - 524
  • [6] A tutorial in irregular shape packing problems
    Bennell, J. A.
    Oliveira, J. F.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 : S93 - S105
  • [7] The geometry of nesting problems: A tutorial
    Bennell, Julia A.
    Oliveira, Jose F.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 184 (02) : 397 - 415
  • [8] Mathematical model and efficient algorithms for object packing problem
    Chernov, N.
    Stoyan, Yu.
    Romanova, T.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (05): : 535 - 553
  • [9] Cormen ThomasH., 2001, INTRO ALGORITHMS, VSecond, P947
  • [10] de Berg Mark, 2008, COMPUTATIONAL GEOMET, DOI DOI 10.1007/978-3-540-77974-2