Squeeze and multi-context attention for polyp segmentation

被引:5
作者
Bhattacharya, Debayan [1 ,2 ]
Eggert, Dennis [2 ]
Betz, Christian [2 ]
Schlaefer, Alexander [1 ]
机构
[1] Hamburg Univ Technol, Inst Med Technol & Intelligent Syst, Schwarzenberg Campus 1, D-21073 Hamburg, Germany
[2] Univ Med Ctr, Clin Ears Nose & Throat, Hamburg, Germany
关键词
attention; attention gate; polyp segmentation; squeeze and excite; squeeze and multi-context; U-Net; VALIDATION;
D O I
10.1002/ima.22795
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial Intelligence-based Computer Aided Diagnostics (AI-CADx) have been proposed to help physicians in reducing misdetection of polyps in colonoscopy examination. The heterogeneity of a polyp's appearance makes detection challenging for physicians and AI-CADx. Towards building better AI-CADx, we propose an attention module called Squeeze and Multi-Context Attention (SMCA) that re-calibrates a feature map by providing channel and spatial attention by taking into consideration highly activated features and context of the features at multiple receptive fields simultaneously. We test the effectiveness of SMCA by incorporating it into the encoder of five popular segmentation models. We use five public datasets and construct intra-dataset and inter-dataset test sets to evaluate the generalizing capability of models with SMCA. Our intra-dataset evaluation shows that U-Net with SMCA and without SMCA has a precision of 0.86 +/- 0.01 and 0.76 +/- 0.02 respectively on CVC-ClinicDB. Our inter-dataset evaluation reveals that U-Net with SMCA and without SMCA has a precision of 0.62 +/- 0.01 and 0.55 +/- 0.09 respectively when trained on Kvasir-SEG and tested on CVC-ColonDB. Similar results are observed using other segmentation models and other public datasets. In conclusion, we demonstrate that incorporating SMCA into the segmentation models leads to an increase in generalizing capability of the segmentation models.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 49 条
[1]  
Alam S., ARXIV
[2]  
Alom M.Z., RECURRENT RESIDUAL C
[3]   A systematic review on overfitting control in shallow and deep neural networks [J].
Bejani, Mohammad Mahdi ;
Ghatee, Mehdi .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (08) :6391-6438
[4]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[5]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[6]  
Chattopadhyay A., BALASUBRAMANIAN VN
[7]  
Chen L.-C., Rethinking atrous convolution for semantic image segmentation
[8]  
Chen LC., ATTENTION SCALE SCAL
[9]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[10]  
Fan DP., PRANET PARALLEL REVE