An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition

被引:19
作者
Durmaz, Muhammet Enes [1 ]
Amirali, Ilhame [2 ]
Amiraliyev, Gabil M. [3 ]
机构
[1] Kirklareli Univ, Dept Informat Technol, TR-39100 Kirklareli, Turkey
[2] Duzce Univ, Fac Arts & Sci, Dept Math, TR-81620 Duzce, Turkey
[3] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24100 Erzincan, Turkey
关键词
Finite difference scheme; Fredholm integro-differential equation; Integral boundary condition; Shishkin mesh; Singular perturbation; Uniform convergence; DIFFERENCE METHOD;
D O I
10.1007/s12190-022-01757-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear singularly perturbed Fredholm integro-differential initial value problem with integral condition is being considered. On a Shishkin-type mesh, a fitted finite difference approach is applied using a composite trapezoidal rule in both; in the integral part of equation and in the initial condition. The proposed technique acquires a uniform second-order convergence in respect to perturbation parameter. Further provided the numerical results to support the theoretical estimates.
引用
收藏
页码:505 / 528
页数:24
相关论文
共 45 条
[1]  
Abdulghani M., 2019, B INT MATH VIRTUAL I, V9, P345
[2]   Numerical Solution for Linear Fredholm Integro-Differential Equation Using Touchard Polynomials [J].
Abdullah, Jalil Talab .
BAGHDAD SCIENCE JOURNAL, 2021, 18 (02) :330-337
[3]   Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method [J].
Abu Arqub, Omar ;
Al-Smadi, Mohammed ;
Shawagfeh, Nabil .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) :8938-8948
[4]  
Amiraliyev G. M., 1995, Turkish Jou.of Math., V19, P207
[5]   A NUMERICAL METHOD FOR A SECOND ORDER SINGULARLY PERTURBED FREDHOLM INTEGRO-DIFFERENTIAL EQUATION [J].
Amiraliyev, Gabil M. ;
Durmaz, Muhammet Enes ;
Kudu, Mustafa .
MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) :37-48
[6]  
Amiraliyev GM, 2020, B BELG MATH SOC-SIM, V27, P71
[7]  
Amiraliyev GM, 2018, J MATH ANAL, V9, P55
[8]  
[Anonymous], 1991, Singular perturbation methods for ordinary differential equations, DOI DOI 10.1007/978-3-540-71225-1
[9]  
Brunner H., 2018, NUMERICAL ANAL COMPU, P205
[10]   A new numerical approach for a singularly perturbed problem with two integral boundary conditions [J].
Cakir, Musa ;
Arslan, Derya .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06)