Analysis of traditional machine learning approaches on heart attacks prediction

被引:0
作者
Berdinanth, Micheal [1 ]
Syed, Samah [1 ]
Velusamy, Shudhesh [1 ]
Suseelan, Angel Deborah [1 ]
Sivanaiah, Rajalakshmi [1 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Dept Comp Sci Engn, Kalavakkam, India
来源
ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA | 2024年 / 34卷 / 01期
关键词
Machine Learning; Heart Disease; Classification; Feature Selection; Prediction;
D O I
10.33436/v34i1y202403
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Considering the persistent challenge of early heart attack detection in patients, despite significant advancements in medical systems, this research project is motivated by the imperative need to develop effective predictive machine learning models. The central problem addressed here in is the identification of individuals at risk of experiencing a heart attack. In response to this problem, two distinct models have been devised and meticulously evaluated, namely decision trees and logistic regression, each designed to fulfil the primary objective of this research. Through a rigorous analysis and thorough evaluation of the results, we have scrutinised the performance of these models. The comparison between decision trees and logistic regression provides valuable insights into their efficacy in predicting heart attacks. The culmination of this endeavor not only contributes to the growing body of knowledge in heart attack prediction and provides healthcare professionals with powerful tools for early diagnosis, potentially saving lives and improving patient outcomes.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 50 条
  • [21] A Survey on Heart Disease Prediction Using Machine Learning Techniques
    Deepa, V. Amala
    Beena, T. Lucia Agnes
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 243 - 254
  • [22] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Rahul Katarya
    Sunit Kumar Meena
    Health and Technology, 2021, 11 : 87 - 97
  • [23] Exploring Machine Learning Techniques for Coronary Heart Disease Prediction
    Khdair, Hisham
    Dasari, Naga M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 28 - 36
  • [24] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Katarya, Rahul
    Meena, Sunit Kumar
    HEALTH AND TECHNOLOGY, 2021, 11 (01) : 87 - 97
  • [25] Quantitative Analysis and Prediction of Global Terrorist Attacks Based on Machine Learning
    Pan, Xiaohui
    SCIENTIFIC PROGRAMMING, 2021, 2021 (2021)
  • [26] Prediction of prokaryotic transposases from protein features with machine learning approaches
    Wang, Qian
    Ye, Jun
    Xu, Teng
    Zhou, Ning
    Lu, Zhongqiu
    Ying, Jianchao
    MICROBIAL GENOMICS, 2021, 7 (07):
  • [27] Evaluation of machine learning based optimized feature selection approaches and classification methods for cervical cancer prediction
    B. Nithya
    V. Ilango
    SN Applied Sciences, 2019, 1
  • [28] Evaluation of machine learning based optimized feature selection approaches and classification methods for cervical cancer prediction
    Nithya, B.
    Ilango, V
    SN APPLIED SCIENCES, 2019, 1 (06):
  • [29] Enhancing Security Attacks Analysis using Regularized Machine Learning Techniques
    Hagos, Desta Haileselassie
    Yazidi, Anis
    Kure, Oivind
    Engelstad, Paal E.
    2017 IEEE 31ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA), 2017, : 909 - 918
  • [30] Boosting Reservoir Prediction Accuracy: A Hybrid Methodology Combining Traditional Reservoir Simulation and Modern Machine Learning Approaches
    Otmane, Mohammed
    Imtiaz, Syed
    Jaluta, Adel M.
    Aborig, Amer
    ENERGIES, 2025, 18 (03)