Simultaneous Reduction of Bulk and Contact Thermal Resistance in High-Loading Thermal Interface Materials Using Self-Assembled Monolayers

被引:54
作者
He, Xiu [1 ,2 ,3 ,4 ]
Liu, Xirui [1 ,2 ,3 ,4 ]
Huang, Jiajing [2 ,3 ,4 ,5 ,6 ]
Lin, Wenbo [2 ,3 ,4 ,5 ]
Wen, Jiawang [6 ,7 ]
Huang, Pochung [6 ]
Zeng, Xiaoliang [8 ]
Zhang, Yan [9 ]
Wang, Qianlong [9 ]
Lin, Yue [2 ,3 ,4 ,5 ,6 ]
机构
[1] Fuzhou Univ, Coll Chem, Fuzhou 350002, Peoples R China
[2] Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fujian Key Lab Nanomat, Fuzhou 350002, Peoples R China
[3] Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[4] Univ Chinese Acad Sci, Fujian Coll, Fuzhou 350002, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350002, Peoples R China
[7] Minjiang Univ, Fuzhou 350002, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Elect Mat, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[9] Shen Rui Graphene Technol Co Ltd, San Ming 366000, Peoples R China
基金
中国国家自然科学基金;
关键词
interface engineering; self-assemble monolayers; thermal interface materials; ENHANCEMENT; TRANSPORT; POLYMER;
D O I
10.1002/adfm.202402276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal interface materials (TIMs) play a pivotal role in the transfer of heat from high-temperature sources, such as CPUs, to heat sinks in power electronics. The effectiveness of grease-type TIMs is determined by their effective thermal impedance (R-EFF), which hinges on optimizing both the specific bulk (R-B) and contact (R-C) thermal resistances. Achieving concurrent optimization of these resistances poses a significant challenge, especially in high filler loading TIMs, typically above 76 vol%. This research leverages interface engineering through Self-Assembled Monolayers (SAMs) to address this challenge. A substantial decrease in R-EFF is realized to 0.169 K cm(2) W-1, a tenfold enhancement compared to non-SAM treated TIMs, which exhibit R-EFF values of 2.265 K cm(2) W-1. This leap in performance is primarily ascribed to the reduced surface energy of SAM treated Al2O3, leading to lower particle-to-particle Van der Waals forces, thereby improving particle dispersion and strengthening interfacial bonds. Furthermore, longer carbon chains in SAMs result in increased R-B, yet a decrease in R-C, due to the chains' capacity for enhanced energy absorption and molecular entanglement. The investigation underscores the significance of shorter-chain SAMs in fine-tuning thermal resistance, highlighting the crucial role of molecular architecture in the design of advanced TIMs.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Depercolation of aggregates upon polymer grafting in simplified industrial nanocomposites studied with dielectric spectroscopy [J].
Baeza, Guilhem P. ;
Oberdisse, Julian ;
Alegria, Angel ;
Saalwaechter, Kay ;
Couty, Marc ;
Genix, Anne-Caroline .
POLYMER, 2015, 73 :131-138
[2]   Feeling the heat [J].
Ball, Philip .
NATURE, 2012, 492 (7428) :174-176
[3]   Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina [J].
Chen, Cheng ;
He, Yan ;
Liu, Changqing ;
Xie, Huaqing ;
Yu, Wei .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (06) :4642-4649
[4]   Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials [J].
Dai, Wen ;
Ma, Tengfei ;
Yan, Qingwei ;
Gao, Jingyao ;
Tan, Xue ;
Lv, Le ;
Hou, Hao ;
Wei, Qiuping ;
Yu, Jinhong ;
Wu, Jianbo ;
Yao, Yagang ;
Du, Shiyu ;
Sun, Rong ;
Jiang, Nan ;
Wang, Yan ;
Kong, Jing ;
Wong, Chingping ;
Maruyama, Shigeo ;
Lin, Cheng-Te .
ACS NANO, 2019, 13 (10) :11561-11571
[5]   A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods [J].
Dai, Wen ;
Lv, Le ;
Lu, Jibao ;
Hou, Hao ;
Yan, Qingwei ;
Alam, Fakhr E. ;
Li, Yifan ;
Zeng, Xiaoliang ;
Yu, Jinhong ;
Wei, Qiuping ;
Xu, Xiangfan ;
Wu, Jianbo ;
Jiang, Nan ;
Du, Shiyu ;
Sun, Rong ;
Xu, Jianbin ;
Wong, Ching-Ping ;
Lin, Cheng-Te .
ACS NANO, 2019, 13 (02) :1547-1554
[6]   Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance [J].
Dou, Zhengli ;
Zhang, Bin ;
Xu, Pengfei ;
Fu, Qiang ;
Wu, Kai .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (49) :57602-57612
[7]   Gecko-inspired adhesive structures enable efficiently thermal conductance and vibration dissipation in a highly mismatched system [J].
Fan, Jianfeng ;
Ding, Shengchang ;
Zeng, Xiangliang ;
Gao, Shan ;
Wen, Zhibin ;
Zeng, Xiaoliang ;
Sun, Rong ;
Ren, Linlin .
CHEMICAL ENGINEERING JOURNAL, 2022, 445
[8]   Percolation in suspensions and de Gennes conjectures [J].
Gallier, Stany ;
Lemaire, Elisabeth ;
Peters, Francois ;
Lobry, Laurent .
PHYSICAL REVIEW E, 2015, 92 (02)
[9]   Annealing-induced interfacial toughening using a molecular nanolayer [J].
Gandhi, Darshan D. ;
Lane, Michael ;
Zhou, Yu ;
Singh, Amit P. ;
Nayak, Saroj ;
Tisch, Ulrike ;
Eizenberg, Moshe ;
Ramanath, Ganapathiraman .
NATURE, 2007, 447 (7142) :299-U2
[10]   Millefeuille-Inspired Thermal Interface Materials based on Double Self-Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding [J].
Gao, Yueyang ;
Bao, Di ;
Zhang, Minghang ;
Cui, Yexiang ;
Xu, Fei ;
Shen, Xiaosong ;
Zhu, Yanji ;
Wang, Huaiyuan .
SMALL, 2022, 18 (02)