EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert X. J. [1 ]
Shen, Erin Y. Y. [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular overpartition; crank; combinatorial interpretation; equality; CONGRUENCES;
D O I
10.1556/012.2023.01542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lovejoy introduced the partition function Al(n) as the number of l-regular overpartitions of n. Andrews defined (k, i)singular overpartitions counted by the partition function Ck,i(n), and pointed out that C3,1(n) = A3(n). Meanwhile, Andrews derived an interesting divisibility property that C3,1(9n+ 3) = C3,1(9n+ 6) = 0 (mod 3). Recently, we constructed the partition statistic rl-crank of l-regular overpartitions and give combinatorial interpretations for some congruences of Al(n) as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the r3-crank of 3-regular overpartitions.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 28 条
  • [21] ON 3k-REGULAR CUBIC PARTITIONS
    Baruah, Nayandeep Deka
    Das, Hirakjyoti
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 685 - 697
  • [22] Congruences for ℓ-regular partition functions modulo 3
    David Furcy
    David Penniston
    The Ramanujan Journal, 2012, 27 : 101 - 108
  • [23] Congruences for (2, 3)-regular partition with designated summands
    Naika, M. S. Mahadeva
    Nayaka, S. Shivaprasada
    NOTE DI MATEMATICA, 2016, 36 (02): : 99 - 123
  • [24] On 3- and 9-Regular Cubic Partitions
    Gireesh, D. S.
    Shivashankar, C.
    Naika, M. S. Mahadeva
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (07)
  • [25] Congruences for l-regular partition functions modulo 3
    Furcy, David
    Penniston, David
    RAMANUJAN JOURNAL, 2012, 27 (01) : 101 - 108
  • [26] A PROOF OF KEITH'S CONJECTURE FOR 9-REGULAR PARTITIONS MODULO 3
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 669 - 674
  • [27] GENERALISATION OF KEITH'S CONJECTURE ON 9-REGULAR PARTITIONS AND 3-CORES
    Lin, Bernard L. S.
    Wang, Andrew Y. Z.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (02) : 204 - 212
  • [28] Ramanujan-type congruences for l-regular partitions modulo 3, 5, 11 and 13
    Jin, Hai-Tao
    Zhang, Li
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 1995 - 2006