Amorphous Thickness-Dependent Strengthening-Softening Transition in Crystalline-Amorphous Nanocomposites

被引:11
作者
Qian, Lei [1 ,2 ]
Yang, Wenqing [1 ]
Luo, Jiasi [1 ]
Wang, Yunjiang [3 ]
Chan, K. C. [1 ]
Yang, Xu-Sheng [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Ind & Syst Engn, Kowloon, Hong Kong 999077, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518060, Peoples R China
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
crystalline-amorphous nanocomposite; Cu-CuTa; atomistic simulations; codeformationcooperative mechanisms; MECHANICAL-BEHAVIOR; DEFORMATION MECHANISMS; SIZE; DUCTILITY; FILMS;
D O I
10.1021/acs.nanolett.3c03848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Core-shell crystalline-amorphous nanocomposites, featuring nanograins surrounded by thick amorphous boundaries, are promising nanoarchitectures for achieving exceptional strength through cooperative strengthening effects. However, a comprehensive understanding of the influence of characteristic sizes, particularly the amorphous thickness, on codeformation strengthening is still lacking, limiting the attainment of the strength limit. Here, we employ molecular dynamics simulations to investigate Cu-CuTa crystalline-amorphous nanocomposites with varying grain sizes and amorphous thicknesses. Our findings demonstrate significant strengthening effects in nanocomposites, effectively suppressing the Hall-Petch breakdown observed in traditional amorphous-free nanograined Cu. Intriguingly, we observe a maximum strength followed by a strengthening-softening transition dependent on the amorphous thickness, as exemplified by a representative nanocomposite featuring a 12.5 nm grain size and a critical amorphous thickness of 4 nm. Inspired by observed shifts in atomistic mechanisms, we developed a theoretical model encompassing variations in grain size and amorphous thickness, providing valuable insights into the size-strength relationship for crystalline-amorphous nanocomposites.
引用
收藏
页码:11288 / 11296
页数:9
相关论文
共 52 条
  • [1] High strength and thermal stability of core-shell Fe-SiOC nanocolumnar composites
    Bai, Lichen
    Wei, Bingqiang
    Wang, Jing
    Ming, Kaisheng
    Zheng, Shijian
    Wang, Jian
    [J]. SCRIPTA MATERIALIA, 2022, 219
  • [2] Structure and shear deformation of metallic crystalline-amorphous interfaces
    Brandl, C.
    Germann, T. C.
    Misra, A.
    [J]. ACTA MATERIALIA, 2013, 61 (10) : 3600 - 3611
  • [3] From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour
    Brink, Tobias
    Albe, Karsten
    [J]. ACTA MATERIALIA, 2018, 156 : 205 - 214
  • [4] The Strongest Size in Gradient Nanograined Metals
    Cao, Penghui
    [J]. NANO LETTERS, 2020, 20 (02) : 1440 - 1446
  • [5] Mechanically-induced grain coarsening in gradient nano-grained copper
    Chen, W.
    You, Z. S.
    Tao, N. R.
    Jin, Z. H.
    Lu, L.
    [J]. ACTA MATERIALIA, 2017, 125 : 255 - 264
  • [6] Simultaneous High-Strength and Deformable Nanolaminates With Thick Biphase Interfaces
    Cheng, Justin Y.
    Xu, Shuozhi
    Chen, Youxing
    Li, Zezhou
    Baldwin, Jon K.
    Beyerlein, Irene J.
    Mara, Nathan A.
    [J]. NANO LETTERS, 2022, 22 (05) : 1897 - 1904
  • [7] Extra strengthening and work hardening in gradient nanotwinned metals
    Cheng, Zhao
    Zhou, Haofei
    Lu, Qiuhong
    Gao, Huajian
    Lu, Lei
    [J]. SCIENCE, 2018, 362 (6414) : 559 - +
  • [8] Toward a quantitative understanding of mechanical behavior of nanocrystalline metals
    Dao, M.
    Lu, L.
    Asaro, R. J.
    De Hosson, J. T. M.
    Ma, E.
    [J]. ACTA MATERIALIA, 2007, 55 (12) : 4041 - 4065
  • [9] Thick grain boundary induced strengthening in nanocrystalline Ni alloy
    Ding, Jie
    Neffati, D.
    Li, Qiang
    Su, R.
    Li, Jin
    Xue, S.
    Shang, Z.
    Zhang, Y.
    Wang, H.
    Kulkarni, Y.
    Zhang, X.
    [J]. NANOSCALE, 2019, 11 (48) : 23449 - 23458
  • [10] Gong HR, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.104204