Visual SLAM Integration With Semantic Segmentation and Deep Learning: A Review

被引:31
|
作者
Pu, Huayan [1 ]
Luo, Jun [1 ]
Wang, Gang [1 ]
Huang, Tao [1 ]
Liu, Hongliang [1 ]
Luo, Jun [1 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep learning; robots; semantic segmentation; simultaneous localization and mapping (SLAM); INERTIAL ODOMETRY; SIMULTANEOUS LOCALIZATION; K-MEANS; TRACKING; ROBUST; RECONSTRUCTION; VERSATILE; VISION; ONLINE;
D O I
10.1109/JSEN.2023.3306371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) technology is essential for robots to navigate unfamiliar environments. It utilizes the sensors the robot carries to answer the question "Where am I?" Of the available sensors, cameras are commonly used. Compared to other sensors like light detection and ranging (LiDARs), the method based on cameras, known as visual SLAM, has been extensively explored by researchers due to the affordability and rich image data cameras provide. Although conventional visual SLAM algorithms have been able to accurately build a map in static environments, dynamic environments present a significant challenge for visual SLAM in practical robotics scenarios. While efforts have been made to address this issue, such as adding semantic segmentation to conventional algorithms, a comprehensive literature review is still lacking. This article discusses the challenges and approaches of visual SLAM with a focus on dynamic objects and their impact on feature extraction and mapping accuracy. First, two classical approaches of conventional visual SLAM are reviewed; then, this article explores the application of deep learning in the front-end and back-end of visual SLAM. Next, visual SLAM in dynamic environments is analyzed and summarized, and insights into future developments are elaborated upon. This article provides effective inspiration for researchers on how to combine deep learning and semantic segmentation with visual SLAM to promote its development.
引用
收藏
页码:22119 / 22138
页数:20
相关论文
共 50 条
  • [21] Enhancing Underwater SLAM Navigation and Perception: A Comprehensive Review of Deep Learning Integration
    Merveille, Fomekong Fomekong Rachel
    Jia, Baozhu
    Xu, Zhizun
    Fred, Bissih
    SENSORS, 2024, 24 (21)
  • [22] Visual SLAM System Design based on Semantic Segmentation
    Wang, Jiwu
    Liu, Yafan
    ICAROB 2019: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2019, : 316 - 319
  • [23] A Comparative Review on Enhancing Visual Simultaneous Localization and Mapping with Deep Semantic Segmentation
    Liu, Xiwen
    He, Yong
    Li, Jue
    Yan, Rui
    Li, Xiaoyu
    Huang, Hui
    SENSORS, 2024, 24 (11)
  • [24] Review of Image Semantic Segmentation Based on Deep Learning
    Tian X.
    Wang L.
    Ding Q.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (02): : 440 - 468
  • [25] Multimodal Deep Learning in Semantic Image Segmentation: A Review
    Raman, Vishal
    Kumari, Madhu
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT 2018), 2018, : 7 - 11
  • [26] Deep Learning Methods for Semantic Segmentation of Dense 3D SLAM Maps
    Pei Yingjian
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 764 - 767
  • [27] A survey on deep learning techniques for image and video semantic segmentation
    Garcia-Garcia, Alberto
    Orts-Escolano, Sergio
    Oprea, Sergiu
    Villena-Martinez, Victor
    Martinez-Gonzalez, Pablo
    Garcia-Rodriguez, Jose
    APPLIED SOFT COMPUTING, 2018, 70 : 41 - 65
  • [28] Research Advances in Deep Learning for Image Semantic Segmentation Techniques
    Xiao, Zhiguo
    Chai, Tengfei
    Li, Nianfeng
    Shen, Xiangfeng
    Guan, Tong
    Tian, Jia
    Li, Xinyuan
    IEEE ACCESS, 2024, 12 : 175715 - 175741
  • [29] Deep learning-based semantic segmentation of remote sensing images: a review
    Lv, Jinna
    Shen, Qi
    Lv, Mingzheng
    Li, Yiran
    Shi, Lei
    Zhang, Peiying
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [30] Image Classification and Semantic Segmentation with Deep Learning
    Quazi, Saiman
    Musa, Sarhan M.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,