Broadening solid ionic conductor selection for sustainable and earth-abundant solid-state lithium metal batteries

被引:13
|
作者
Zou, Peichao [1 ]
Wang, Chunyang [1 ]
He, Yubin [1 ]
Xin, Huolin L. [1 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
ANODE; ELECTROLYTES; INTERFACE; STABILITY;
D O I
10.1039/d3ee02657d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A challenging task in solid-state batteries is finding a solid ionic conductor that is simultaneously electronically insulative, stable at both low and high voltages, and sustainable. Current prevalent ceramic lithium-ion conductors (LICs) struggle to balance all these criteria, and their selection is limited for application in solid-state lithium metal batteries. Here, we report a universal solid electrolyte design paradigm, i.e., an ceramic LIC sandwiched between two solid electronic separators, to allow a broad range of ceramic LICs including Li1.5Al0.5Ti1.5(PO4)3, LiV3O8, and Li4Ti5O12, to be deployed in solid-state lithium batteries. With the solid electrolyte design, the requirements of electronic insulation or (electro)chemical stability for ceramic LICs are no longer needed. A high critical current density of 14 mA cm-2 (under a constant plating/stripping capacity of 0.5 mA h cm-2) and long-life cycling (7000 hours at 0.2 mA cm-2 and 2500 hours at 0.5 mA cm-2) were realized in Li//Li symmetric cells at room temperature. Remarkably high capacity retentions (87% after 400 cycles) were also achieved in Li0 full cells paired with LiNi0.8Mn0.1Co0.1O2 cathodes (mass loading: 7.4 mg cm-2). Our discoveries promise the implication of broader-ranging, more sustainable, yet previously unrecognized ionic conductors in practical solid-state batteries. We propose a universal solid electrolyte design that broadens the selection of ceramic LICs for solid-state lithium metal batteries, without requirements of electronic insulation or (electro)chemical stability.
引用
收藏
页码:5871 / 5880
页数:10
相关论文
共 50 条
  • [41] Peeking across Grain Boundaries in a Solid-State Ionic Conductor
    Ganapathy, Swapna
    Yu, Chuang
    van Eck, Ernst R. H.
    Wagemaker, Marnix
    ACS ENERGY LETTERS, 2019, 4 (05) : 1092 - 1097
  • [42] Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries
    Zhu, Xinxin
    Jiang, Wei
    Zhao, Shu
    Huang, Renzhi
    Ling, Min
    Liang, Chengdu
    Wang, Liguang
    NANO ENERGY, 2022, 96
  • [43] Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries
    Li, Chenghan
    Zhou, Shi
    Dai, Lijie
    Zhou, Xuanyi
    Zhang, Biao
    Chen, Liwen
    Zeng, Tao
    Liu, Yating
    Tang, Yongfu
    Jiang, Jie
    Huang, Jianyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24661 - 24669
  • [44] Origin of the lithium metal anode instability in solid-state batteries during discharge
    Singh, Dheeraj Kumar
    Fuchs, Till
    Krempaszky, Christian
    Schweitzer, Pascal
    Lerch, Christian
    Richter, Felix H.
    Janek, Juergen
    MATTER, 2023, 6 (05) : 1463 - 1483
  • [45] Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries
    Subramani, Ramesh
    Pham, Minh-Nhat
    Lin, Yu-Hsing
    Hsieh, Chien-Te
    Lee, Yuh-Lang
    Jan, Jeng-Shiung
    Chiu, Chi-Cheng
    Teng, Hsisheng
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [46] Vitrimer with dynamic imine bonds as a solid-state electrolyte for lithium metal batteries
    Yang, Seonghyeon
    Park, Seungjin
    Kim, Seongseop
    Kim, Sung-Kon
    MATERIALS TODAY ENERGY, 2024, 45
  • [47] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [48] Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries
    Yoon, Kyungho
    Lee, Sunyoung
    Oh, Kyungbae
    Kang, Kisuk
    ADVANCED MATERIALS, 2022, 34 (04)
  • [49] In situ construction of a flexible interlayer for durable solid-state lithium metal batteries
    Ci, Naixuan
    Zhang, Lin
    Li, Jianwei
    Li, Deping
    Cheng, Jun
    Sun, Qing
    Xi, Zhenjie
    Xu, Zhou
    Zhao, Guoqing
    Ci, Lijie
    CARBON, 2022, 187 : 13 - 21
  • [50] A review of solid-state lithium metal batteries through in-situ solidification
    Xu, Pan
    Shuang, Zong-Yao
    Zhao, Chen-Zi
    Li, Xue
    Fan, Li-Zhen
    Chen, Aibing
    Chen, Haoting
    Kuzmina, Elena
    Karaseva, Elena
    Kolosnitsyn, Vladimir
    Zeng, Xiaoyuan
    Dong, Peng
    Zhang, Yingjie
    Wang, Mingpei
    Zhang, Qiang
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (01) : 67 - 86