Genome-wide identification and comprehensive analysis of WRKY transcription factor family in safflower during drought stress

被引:9
作者
Song, Xianming [1 ,2 ]
Hou, Xianfei [1 ]
Zeng, Youling [2 ]
Jia, Donghai [1 ]
Li, Qiang [1 ]
Gu, Yuanguo [1 ]
Miao, Haocui [1 ]
机构
[1] Xinjiang Acad Agr Sci, Econ Crop Res Inst, Urumqi 830091, Peoples R China
[2] Xinjiang Univ, Coll Life Sci & Technol, Xinjiang Key Lab Biol Resources & Genet Engn, Urumqi 830046, Peoples R China
关键词
ACTIVATED EXPRESSION; ARABIDOPSIS WRKY33; CONFERS DROUGHT; TOLERANCE; PROTEIN; GENES; RESISTANCE; RESPONSES; PROMOTER; REGIONS;
D O I
10.1038/s41598-023-44340-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The WRKY family is an important family of transcription factors in plant development and stress response. Currently, there are few reports on the WRKY gene family in safflower (Carthamus tinctorius L.). In this study, a total of 82 CtWRKY genes were identified from the safflower genome and could be classified into 3 major groups and 5 subgroups based on their structural and phylogenetic characteristics. The results of gene structure, conserved domain and motif analyses indicated that CtWRKYs within the same subfamily maintained a consistent exon/intron organization and composition. Chromosomal localization and gene duplication analysis results showed that CtWRKYs were randomly localized on 12 chromosomes and that fragment duplication and purification selection may have played an important role in the evolution of the WRKY gene family in safflower. Promoter cis-acting element analysis revealed that the CtWRKYs contain many abiotic stress response elements and hormone response elements. Transcriptome data and qRT-PCR analyses revealed that the expression of CtWRKYs showed tissue specificity and a strong response to drought stress. Notably, the expression level of the CtWRKY55 gene rapidly increased more than eightfold under drought treatment and rehydration, indicating that it may be a key gene in response to drought stress. These results provide useful insights for investigating the regulatory function of the CtWRKY gene in safflower growth and development, as well as identifying key genes for future molecular breeding programmes.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Genome-wide identification of the WRKY gene family in blueberry (Vaccinium spp.) and expression analysis under abiotic stress
    Lei, Lei
    Dong, Kun
    Liu, Siwen
    Li, Yadong
    Xu, Guohui
    Sun, Haiyue
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [42] Genome-Wide Identification of WRKY Family Genes and Analysis of Their Expression in Response to Abiotic Stress in Ginkgo biloba L.
    Cheng, Shuiyuan
    Liu, Xiaomeng
    Liao, Yongling
    Zhang, Weiwei
    Ye, Jiabao
    Rao, Shen
    Xu, Feng
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2019, 47 (04) : 1100 - 1115
  • [43] Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera
    Wang, Lina
    Zhu, Wei
    Fang, Linchuan
    Sun, Xiaoming
    Su, Lingye
    Liang, Zhenchang
    Wang, Nian
    Londo, Jason P.
    Li, Shaohua
    Xin, Haiping
    BMC PLANT BIOLOGY, 2014, 14
  • [44] Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Pisum sativum L
    Li, Long
    Xu, Jian bo
    Zhu, Zhi wen
    Ma, Rui
    Wu, Xiao zong
    Geng, Yu ke
    BMC GENOMICS, 2024, 25 (01):
  • [45] Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut
    Song, Hui
    Wang, Pengfei
    Lin, Jer-Young
    Zhao, Chuanzhi
    Bi, Yuping
    Wang, Xingjun
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [46] Genome-wide identification and expression analysis of the CBF transcription factor family in Lolium perenne under abiotic stress
    Wang, Dan
    Cui, Binyu
    Guo, Hanyu
    Liu, Yaxi
    Nie, Shuming
    PLANT SIGNALING & BEHAVIOR, 2023, 18 (01)
  • [47] Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa
    Zhu, Xiaolin
    Wang, Baoqiang
    Wang, Xian
    Zhang, Chaoyang
    Wei, Xiaohong
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (04) : 787 - 800
  • [48] Genome-Wide Identification, Classification and Expression Analysis of the MYB Transcription Factor Family in Petunia
    Chen, Guanqun
    He, Weizhi
    Guo, Xiangxin
    Pan, Junsong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [49] Genome-wide identification and expression pattern analysis of the kiwifruit GRAS transcription factor family in response to salt stress
    Zhu, Ling
    Yin, Tuo
    Zhang, Mengjie
    Yang, Xiuyao
    Wu, Jiexin
    Cai, Hanbing
    Yang, Na
    Li, Xulin
    Wen, Ke
    Chen, Daming
    Zhang, Hanyao
    Liu, Xiaozhen
    BMC GENOMICS, 2024, 25 (01)
  • [50] Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean
    Wu, Jing
    Chen, Jibao
    Wang, Lanfen
    Wang, Shumin
    FRONTIERS IN PLANT SCIENCE, 2016, 8