Hitting times for sticky skew CIR process

被引:0
|
作者
Zhang, Haoyan [1 ]
Tian, Yingxu [1 ,2 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Sticky skew diffusion; CIR process; time change; infinitesimal generator; first hitting time; STOCHASTIC DIFFERENTIAL-EQUATIONS; LOCAL-TIMES;
D O I
10.1080/17442508.2023.2255341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an extended skew CIR processes with sticky points, which is referred to as the sticky skew CIR process. We first calculate the infinitesimal generator and its domain. To explore its trajectory properties, we compute the Laplace transforms and the expectations of first hitting times over a constant boundary. The solutions of Laplace transforms are expressed in terms of Tricomi and Kummer confluent hypergeometric functions.
引用
收藏
页码:1052 / 1071
页数:20
相关论文
共 50 条
  • [1] On stability of the Markov-modulated skew CIR process
    Xu, Guangli
    Wang, Yongjin
    STATISTICS & PROBABILITY LETTERS, 2016, 109 : 139 - 144
  • [2] On the Transition Density and First Hitting Time Distributions of the Doubly Skewed CIR Process
    Xu, Guangli
    Wang, Xingchun
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (03) : 735 - 752
  • [3] On the Transition Density and First Hitting Time Distributions of the Doubly Skewed CIR Process
    Guangli Xu
    Xingchun Wang
    Methodology and Computing in Applied Probability, 2021, 23 : 735 - 752
  • [4] First hitting time for renewal process with uncertain interarrival times and random rewards
    Liu, Zhe
    Jia, Lifen
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5539 - 5555
  • [5] Hitting Times of Bessel Processes
    T. Byczkowski
    J. Małecki
    M. Ryznar
    Potential Analysis, 2013, 38 : 753 - 786
  • [6] Hitting Times of Bessel Processes
    Byczkowski, T.
    Malecki, J.
    Ryznar, M.
    POTENTIAL ANALYSIS, 2013, 38 (03) : 753 - 786
  • [7] HITTING TIMES OF HYPERBOLIC BESSEL PROCESSES
    Hamana, Yuji
    Zhang, Lujia
    COLLOQUIUM MATHEMATICUM, 2024, 175 (02) : 163 - 182
  • [8] Parameter sensitivity of CIR process
    Aly, S. M. Ould
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 6
  • [9] First hitting times for doubly skewed Ornstein-Uhlenbeck processes
    Song, Shiyu
    Wang, Suxin
    Wang, Yongjin
    STATISTICS & PROBABILITY LETTERS, 2015, 96 : 212 - 222
  • [10] Perpetual integral functionals as hitting and occupation times
    Salminen, P
    Yor, M
    ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 371 - 419