Boosting the cycle and rate performance of Li1.2Mn0.54Ni0.13Co0.13O2 via single-crystal structure design

被引:9
作者
Hao, Zhenkun [1 ]
Gou, Xiaoxia [1 ]
Ma, Hongyun [2 ]
Yang, Zhuo [1 ]
Hao, Zhimeng [1 ]
Yang, Gaojing [1 ]
Lu, Yong [1 ]
Zhao, Qing [1 ]
Jin, Huifen [2 ]
Zhang, Qiang [2 ]
Yan, Zhenhua [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr RECAST, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Tianjin Lishen New Energy Technol Co Ltd, Tianjin 300450, Peoples R China
基金
中国国家自然科学基金;
关键词
single crystal; cathode materials; polyvinylpyrrolidone; high-rate capability; LITHIUM-ION; CATHODE MATERIALS; LAYERED LI; MORPHOLOGY; BATTERIES; SURFACE; MN;
D O I
10.1007/s40843-023-2494-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-rich layered oxides (LROs) are regarded as promising cathode materials to build high-energy-density lithium-ion batteries (LIBs). However, conventional polycrystalline LROs suffer from irreversible structure changes and slow interfacial kinetics, leading to poor cycle and rate performance. Here we propose a polyvinylpyrrolidone (PVP)assisted co-precipitation method to prepare single-crystal LRO (Li1.2Mn0.54Ni0.13Co0.13O2) nanosheets. PVP can adsorb on a specific crystal plane during precursor formation to obtain ideal nanosheet morphology. This method is simple, low-cost and easy to scale up. The prepared single-crystal nanosheets feature continuous lattice and no grain boundary inside, which shorten the path of Li+ intercalation/deintercalation and improve the electrode reaction kinetics. The single-crystal structure also inhibits the irreversible phase transformation from the layered phase to the spinel phase and the formation of cracks owing to suitable particle size, stabilizing the layered structure. As a result, the prepared single-crystal Li1.2Mn0.54Ni0.13Co0.13O2 nanosheets deliver a reversible capacity of 254.5 mA h g(-1) at a rate of 0.1 C and good cycling stability with a capacity retention of 71.9% after 1000 cycles at a high rate of 5 C. This work provides a facile method to prepare nano-sized single-crystal LRO materials for improving the cycle and rate performance of LIBs.
引用
收藏
页码:3424 / 3432
页数:9
相关论文
共 50 条
  • [21] Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2
    Yin, Ei
    Grimaud, Alexis
    Rousse, Gwenaelle
    Abakumov, Artem M.
    Senyshyn, Anatoliy
    Zhang, Leiting
    Trabesinger, Sigita
    Iadecola, Antonella
    Foix, Dominique
    Giaume, Domitille
    Tarascon, Jean-Marie
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [22] Electrochemical characteristics of li-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 with different manganese raw materials
    Yin, Yanping
    Zhuang, Weidong
    Wang, Zhong
    Lu, Huaquan
    Lu, Shigang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2015, 39 (10): : 891 - 895
  • [23] Graphene Quantum Dot Surface Coating for Improving theElectrochemical Performance of Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2
    Yu, Mengtian
    Wei, Xuefei
    Min, Xiuqin
    Yuan, Anbao
    Xu, Jiaqiang
    ENERGY & FUELS, 2022, 36 (10) : 5502 - 5512
  • [24] Interfacial cerium modification promotes the electrochemical properties of self-assembled Li1.2Mn0.54Ni0.13Co0.13O2 hollow microspheres
    Shen, Chaoqi
    Yang, Peng
    Hu, Heshan
    Lin, Wei
    Zhou, Kai
    Wang, Lianbang
    IONICS, 2024, 30 (05) : 2503 - 2516
  • [25] Effects of Citric Acid Treatment on the Electrochemical Properties of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
    Liu, Bailong
    Zhang, Zhaohui
    Wu, Mei
    Xu, Shuxiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (08): : 7578 - 7589
  • [26] Enabling improved electrochemical properties by uniform sodium doping for Li-rich Mn-based Li1.2Mn0.54Ni0.13Co0.13O2 layered oxide
    Chen, Haitao
    Li, Weizhou
    IONICS, 2022, 28 (05) : 2083 - 2097
  • [27] Preparation and coating modification of lithium-rich layered oxides Li1.2Mn0.54Ni0.13Co0.13O2 via Al2O3
    Yang, Fang
    Li, Yanli
    Wang, Zhen
    Chen, Cunguang
    Guo, Zhimeng
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (01) : 1 - 8
  • [28] Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery
    ChenQiang Du
    Fei Zhang
    ChenXiang Ma
    JunWei Wu
    ZhiYuan Tang
    XinHe Zhang
    Deyang Qu
    Ionics, 2016, 22 : 209 - 218
  • [29] Enhanced Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode with an Ionic Conductive LiVO3 Coating Layer
    Liu, Xiaoyu
    Su, Qili
    Zhang, Congcong
    Huang, Tao
    Yu, Aishui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (01): : 255 - 263
  • [30] Enhance performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathodes via B3+ doping owe to the suppression of spinel phase generates
    Liu, Jinfeng
    Liu, Yan
    Feng, Liwei
    Qin, Wenchao
    Yang, Zihao
    VACUUM, 2022, 202