Boosting the cycle and rate performance of Li1.2Mn0.54Ni0.13Co0.13O2 via single-crystal structure design

被引:13
作者
Hao, Zhenkun [1 ]
Gou, Xiaoxia [1 ]
Ma, Hongyun [2 ]
Yang, Zhuo [1 ]
Hao, Zhimeng [1 ]
Yang, Gaojing [1 ]
Lu, Yong [1 ]
Zhao, Qing [1 ]
Jin, Huifen [2 ]
Zhang, Qiang [2 ]
Yan, Zhenhua [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr RECAST, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Tianjin Lishen New Energy Technol Co Ltd, Tianjin 300450, Peoples R China
基金
中国国家自然科学基金;
关键词
single crystal; cathode materials; polyvinylpyrrolidone; high-rate capability; LITHIUM-ION; CATHODE MATERIALS; LAYERED LI; MORPHOLOGY; BATTERIES; SURFACE; MN;
D O I
10.1007/s40843-023-2494-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-rich layered oxides (LROs) are regarded as promising cathode materials to build high-energy-density lithium-ion batteries (LIBs). However, conventional polycrystalline LROs suffer from irreversible structure changes and slow interfacial kinetics, leading to poor cycle and rate performance. Here we propose a polyvinylpyrrolidone (PVP)assisted co-precipitation method to prepare single-crystal LRO (Li1.2Mn0.54Ni0.13Co0.13O2) nanosheets. PVP can adsorb on a specific crystal plane during precursor formation to obtain ideal nanosheet morphology. This method is simple, low-cost and easy to scale up. The prepared single-crystal nanosheets feature continuous lattice and no grain boundary inside, which shorten the path of Li+ intercalation/deintercalation and improve the electrode reaction kinetics. The single-crystal structure also inhibits the irreversible phase transformation from the layered phase to the spinel phase and the formation of cracks owing to suitable particle size, stabilizing the layered structure. As a result, the prepared single-crystal Li1.2Mn0.54Ni0.13Co0.13O2 nanosheets deliver a reversible capacity of 254.5 mA h g(-1) at a rate of 0.1 C and good cycling stability with a capacity retention of 71.9% after 1000 cycles at a high rate of 5 C. This work provides a facile method to prepare nano-sized single-crystal LRO materials for improving the cycle and rate performance of LIBs.
引用
收藏
页码:3424 / 3432
页数:9
相关论文
共 39 条
[1]   A rechargeable aqueous manganese-ion battery based on intercalation chemistry [J].
Bi, Songshan ;
Wang, Shuai ;
Yue, Fang ;
Tie, Zhiwei ;
Niu, Zhiqiang .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries [J].
Cao, Wenpeng ;
Yan, Jitong ;
Zhang, Pan ;
Zhang, Longchen ;
Jia, Cuichao ;
Liu, Yanyan ;
Tang, Yongfu .
IONICS, 2022, 28 (10) :4515-4526
[3]   Surface modification of Li-rich manganese-based cathode materials by chemical etching [J].
Cui, Heng ;
Li, Hang ;
Liu, Jiuding ;
Zhang, Yudong ;
Cheng, Fangyi ;
Chen, Jun .
INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (07) :1694-1700
[4]   Fast Charge-Transport Interface on Primary Particles Boosts High- Rate Performance of Li-Rich Mn-Based Cathode Materials [J].
Cui, Shao-Lun ;
Xiao, Zhen-Xue ;
Cui, Bai-Chuan ;
Liu, Sheng ;
Gao, Xue-Ping ;
Li, Guo-Ran .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) :13195-13204
[5]   Understanding Li roles in chemical reversibility of O2-type Li-rich layered cathode materials [J].
Feng, Jie ;
Jiang, Yun-Shan ;
Yu, Fu-Da ;
Ke, Wang ;
Que, Lan-Fang ;
Duh, Jenq-Gong ;
Wang, Zhen-Bo .
JOURNAL OF ENERGY CHEMISTRY, 2022, 66 :666-675
[6]   Critical intermediate β-Li2NiO3 phase for structural degradation of Ni-rich layered cathodes during thermal runaway [J].
Gao, Ang ;
Li, Xinyan ;
Zhang, Qinghua ;
Lyu, Yingchun ;
Tang, Zhexin ;
Shang, Tongtong ;
Meng, Fanqi ;
Luo, Yanhong ;
Ji, Pengxiang ;
Wang, Xuefeng ;
Xiao, Dongdong ;
Su, Dong ;
Hu, Yong-Sheng ;
Li, Hong ;
Chen, Zhen ;
Gu, Lin .
BATTERY ENERGY, 2023, 2 (01)
[7]   Influence of anions on the morphology of nanophase α-MnO2 crystal via hydrothermal process [J].
Gao, Yongqian ;
Wang, Zhenghua ;
Xiong, Shenglin ;
Liu, Yi ;
Qian, Yitai .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (08) :2576-2579
[8]   In Situ Surface Self-Reconstruction Strategies in Li-Rich Mn-Based Layered Cathodes for Energy-Dense Li-Ion Batteries [J].
Gou, Xiaoxia ;
Hao, Zhenkun ;
Hao, Zhimeng ;
Yang, Gaojing ;
Yang, Zhuo ;
Zhang, Xinyue ;
Yan, Zhenhua ;
Zhao, Qing ;
Chen, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (18)
[9]   Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries [J].
He, Wei ;
Guo, Weibin ;
Wu, Hualong ;
Lin, Liang ;
Liu, Qun ;
Han, Xiao ;
Xie, Qingshui ;
Liu, Pengfei ;
Zheng, Hongfei ;
Wang, Laisen ;
Yu, Xiqian ;
Peng, Dong-Liang .
ADVANCED MATERIALS, 2021, 33 (50)
[10]   Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides [J].
Hua, Weibo ;
Yang, Xiaoxia ;
Casati, Nicola P. M. ;
Liu, Laijun ;
Wang, Suning ;
Baran, Volodymyr ;
Knapp, Michael ;
Ehrenberg, Helmut ;
Indris, Sylvio .
ESCIENCE, 2022, 2 (02) :183-191