Application of Artificial Intelligence Techniques for Brain-Computer Interface in Mental Fatigue Detection: A Systematic Review (2011-2022)

被引:21
作者
Yaacob, Hamwira [1 ]
Hossain, Farhad [2 ]
Shari, Sharunizam [3 ]
Khare, Smith K. K. [4 ]
Ooi, Chui Ping [5 ]
Acharya, U. Rajendra [6 ]
机构
[1] Int Islamic Univ Malaysia, Kulliyyah Informat & Commun Technol, Kuala Lumpur, Malaysia
[2] Int Islamic Univ Malaysia, Kulliyyah Informat & Commun Technol, Kuala Lumpur, Malaysia
[3] Univ Teknol MARA Cawangan Kedah, Coll Comp Informat & Media, Merbok, Malaysia
[4] Aarhus Univ, Elect & Comp Engn Dept, Aarhus, Denmark
[5] Singapore Univ Social Sci, Sch Sci & Technol, Clementi Rd, Singapore, Singapore
[6] Univ Southern Queensland, Sch Math Phys & Comp, Springfield Cent, Qld, Australia
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); mental fatigue detection; PRISMA; EEG; SLEEPINESS; WIRELESS; NETWORK; SIGNALS; BCI; ARTIFACTS; VALIDITY; DESIGN; SOCCER;
D O I
10.1109/ACCESS.2023.3296382
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mental fatigue is a psychophysical condition with a significant adverse effect on daily life, compromising both physical and mental wellness. We are experiencing challenges in this fast-changing environment, and mental fatigue problems are becoming more prominent. This demands an urgent need to explore an effective and accurate automated system for timely mental fatigue detection. Therefore, we present a systematic review of brain-computer interface (BCI) studies for mental fatigue detection using artificial intelligent (AI) techniques published in Scopus, IEEE Explore, PubMed and Web of Science (WOS) between 2011 and 2022. The Boolean search expression that comprised (((ELECTROENCEPHALOGRAM) AND (BCI)) AND (FATIGUE CLASSIFICATION)) AND (BRAIN-COMPUTER INTERFACE) has been used to select the articles. Through the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology, we selected 39 out of 562 articles. Our review identified the research gap in employing BCI for mental fatigue intervention through automated neurofeedback. The AI techniques employed to develop EEG-based mental fatigue detection are also discussed. We have presented comprehensive challenges and future recommendations from the gaps identified in discussions. The future direction includes data fusion, hybrid classification models, availability of public datasets, uncertainty, explainability, and hardware implementation strategies.
引用
收藏
页码:74736 / 74758
页数:23
相关论文
共 122 条
  • [1] UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection
    Abdar, Moloud
    Salari, Soorena
    Qahremani, Sina
    Lam, Hak-Keung
    Karray, Fakhri
    Hussain, Sadiq
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2023, 90 : 364 - 381
  • [2] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [3] Heart rate variability: a review
    Acharya, U. Rajendra
    Joseph, K. Paul
    Kannathal, N.
    Lim, Choo Min
    Suri, Jasjit S.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) : 1031 - 1051
  • [4] SUBJECTIVE AND OBJECTIVE SLEEPINESS IN THE ACTIVE INDIVIDUAL
    AKERSTEDT, T
    GILLBERG, M
    [J]. INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1990, 52 (1-2) : 29 - 37
  • [5] Alizadehsani R., 1991, ANN OPER RES
  • [6] Arroyo-Gallego T., 2022, Tech. Rep., DOI [10.21203/rs.3.rs-1580509/v1, DOI 10.21203/RS.3.RS-1580509/V1]
  • [7] A blind source separation technique using second-order statistics
    Belouchrani, A
    AbedMeraim, K
    Cardoso, JF
    Moulines, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 434 - 444
  • [8] Fatigue among working people:: validity of a questionnaire measure
    Beurskens, AJHM
    Bültmann, U
    Kant, I
    Vercoulen, JHMM
    Bleijenberg, G
    Swaen, GMH
    [J]. OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2000, 57 (05) : 353 - 357
  • [9] EEG-Based Brain-Controlled Mobile Robots: A Survey
    Bi, Luzheng
    Fan, Xin-An
    Liu, Yili
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2013, 43 (02) : 161 - 176
  • [10] Mental fatigue: Costs and benefits
    Boksem, Maarten A. S.
    Tops, Mattie
    [J]. BRAIN RESEARCH REVIEWS, 2008, 59 (01) : 125 - 139