Investigation of bio-active Amaryllidaceae alkaloidal small molecules as putative SARS-CoV-2 main protease and host TMPRSS2 inhibitors: interpretation by in-silico simulation study

被引:2
作者
Bhowmick, Shovonlal [1 ]
Mistri, Tapan Kumar [2 ]
Khan, Mohammad Rizwan [3 ]
Patil, Pritee Chunarkar [4 ]
Busquets, Rosa [5 ]
Ikbal, Abu Md Ashif [6 ]
Choudhury, Ankita [7 ]
Roy, Dilip Kumar [8 ]
Palit, Partha [6 ,10 ]
Saha, Achintya [9 ,11 ]
机构
[1] PDx Res Labs LLP, Kolkata, West Bengal, India
[2] SRM Inst Sci & Technol, Dept Chem, Kattankulathur, India
[3] King Saud Univ, Coll Sci, Dept Chem, Riyadh, Saudi Arabia
[4] Bharati Vidyapeeth Deemed Univ, Rajiv Gandhi Inst IT & Biotechnol, Dept Bioinformat, Pune, India
[5] Kingston Univ London, Sch Life Sci Pharm & Chem, Kingston Upon Thames, Surrey, England
[6] Assam Univ, Dept Pharmaceut Sci, Div Pharmacognosy, Silchar, Assam, India
[7] Allamana TR Coll Pharm, Srigouri, Assam, India
[8] JIS Univ, Dept Pharmaceut Technol, Kolkata, India
[9] Univ Calcutta, Dept Chem Technol, Kolkata, India
[10] Dept Pharmaceut Sci, Silchar 788011, Assam, India
[11] Univ Calcutta, Dept Chem Technol, Kolkata 700009, India
关键词
SARS-CoV-2; main protease; TMPRSS2; molecular docking; molecular dynamic simulation; amaryllidaceae alkaloidal compound; DOCKING; MECHANISM; DYNAMICS; ACE2;
D O I
10.1080/07391102.2023.2238065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The novel coronavirus disease 2019 (Covid-19) outburst is still threatening global health. This highly contagious viral disease is caused by the infection of SARS-CoV-2 virus. Covid-19 and post-Covid-19 complications induce noteworthy mortality. Potential chemical hits and leads against SARS-CoV-2 for combating Covid-19 are urgently required. In the present study, a virtual-screening protocol was executed on potential Amaryllidaceae alkaloids from a pool of natural compound library against SARS-CoV-2 main protease (M-pro) and transmembrane serine protease (TMPRSS2). For the collected 1016 alkaloids from the curated library, initially, molecular docking using AutoDock Vina (ADV), and thereafter 100 ns molecular-dynamic (MD) simulation has been executed for the best top-ranked binding affinity compounds for both the viral and host proteins. Comprehensive intermolecular-binding interactions profile of Amaryllidaceae alkaloids suggested that phyto-compounds Galantamine, Lycorenine, and Neronine as potent modulators of SARS-CoV-2 M-pro and host TMPRSS2 protein. All atomistic long range 100 ns MD simulation studies of each top ranked complex in triplicates also illustrated strong binding affinity of three compounds towards M-pro and TMPRSS2. Identified compounds might be recommended as prospective anti-viral agents for future drug development selectively targeting the SARS-CoV-2 M-pro or blocking host TMPRSS2 receptor, subjected to pre-clinical and clinical assessment for a better understanding of in-vitro molecular interaction and in-vivo validation.Communicated by Ramaswamy H. Sarma
引用
收藏
页码:7107 / 7127
页数:21
相关论文
共 50 条
  • [1] In-silico screening for identification of potential inhibitors against SARS-CoV-2 transmembrane serine protease 2 (TMPRSS2)
    Barge, Sagar
    Jade, Dhananjay
    Gosavi, Gokul
    Talukdar, Narayan Chandra
    Borah, Jagat
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 162
  • [2] Exploring the in-silico approach for assessing the potential of natural compounds as a SARS-CoV-2 main protease inhibitors
    Patel, Ashish
    Patel, Alkesh
    Hemani, Rahul
    Solanki, Riddhi
    Kansara, Janki
    Patel, Gargi
    Pradhan, Sayantan
    Bambharoliya, Tushar
    ORGANIC COMMUNICATIONS, 2021, 14 (01) : 58 - 72
  • [3] Acridone Alkaloids: In-Silico Investigation Against SARS-CoV-2 Main Protease
    Oderinlo, Ogunyemi Olajide
    Iwegbulam, Chiamaka Gift
    Ekweli, Overcomer Abumonye
    Alawode, Taye T.
    Oyeneyin, Oluwatoba Emmanuel
    CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY, 2022, 5 (05): : 1441 - 1450
  • [4] Acridone Alkaloids: In-Silico Investigation Against SARS-CoV-2 Main Protease
    Ogunyemi Olajide Oderinlo
    Chiamaka Gift Iwegbulam
    Overcomer Abumonye Ekweli
    Taye T. Alawode
    Oluwatoba Emmanuel Oyeneyin
    Chemistry Africa, 2022, 5 : 1441 - 1450
  • [5] Reprofiling of approved drugs against SARS-CoV-2 main protease: an in-silico study
    Kumar, Prateek
    Bhardwaj, Taniya
    Kumar, Ankur
    Gehi, Bhuvaneshwari R.
    Kapuganti, Shivani K.
    Garg, Neha
    Nath, Gopal
    Giri, Rajanish
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (07) : 3170 - 3184
  • [6] Apigenin analogues as SARS-CoV-2 main protease inhibitors: In-silico screening approach
    Farhat, Ameny
    Ben Hlima, Hajer
    Khemakhem, Bassem
    Ben Halima, Youssef
    Michaud, Philippe
    Abdelkafi, Slim
    Fendri, Imen
    BIOENGINEERED, 2022, 13 (02) : 3350 - 3361
  • [7] SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study
    Baby, Krishnaprasad
    Maity, Swastika
    Mehta, Chetan H.
    Suresh, Akhil
    Nayak, Usha Y.
    Nayak, Yogendra
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 896
  • [8] A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease
    Elkaeed, Eslam B.
    Eissa, Ibrahim H.
    Elkady, Hazem
    Abdelalim, Ahmed
    Alqaisi, Ahmad M.
    Alsfouk, Aisha A.
    Elwan, Alaa
    Metwaly, Ahmed M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [9] In Silico Study of Coumarins and Quinolines Derivatives as Potent Inhibitors of SARS-CoV-2 Main Protease
    Yanez, Osvaldo
    Osorio, Manuel Isaias
    Uriarte, Eugenio
    Areche, Carlos
    Tiznado, William
    Perez-Donoso, Jose M.
    Garcia-Beltran, Olimpo
    Gonzalez-Nilo, Fernando
    FRONTIERS IN CHEMISTRY, 2021, 8
  • [10] In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (Mpro)
    Victoria Adeola Falade
    Temitope Isaac Adelusi
    Ibrahim Olaide Adedotun
    Misbaudeen Abdul-Hammed
    Teslim Alabi Lawal
    Saheed Alabi Agboluaje
    In Silico Pharmacology, 9 (1)