Existence of Optical Vortex Solitons in Pair Plasmas

被引:0
作者
Zhang, Rui-feng [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Calculus of variations; mountain-pass theorem; pair plasmas; nonlinear Schrodinger type equation; optical vortices; DYNAMICS; BEAMS; PROPAGATION; VORTICES;
D O I
10.1007/s10255-023-1075-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optical vortices arise as phase dislocations of light fields and they are of importance in modern optical physics. In this study, we employ the calculus of variations method to develop an existence theory for the steady state vortex solutions of a nonlinear Schrodinger type equation to model light waves that propagate in a medium with a new focusing-defocusing nonlinearity. First, we demonstrate the existence of positive radially symmetric solutions by constrained minimization, where we give some interesting explicit estimates related to vortex winding numbers and the wave propagation constant. Second, we establish the existence of saddle-point solutions through a mountain-pass argument.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 50 条
[11]   Parametric optical-vortex solitons [J].
Di Trapani, Paolo ;
Valiulis, Gintaras ;
Kivshar, Yuri S. ;
Alexander, Tristram J. .
Optics and Photonics News, 2000, 11 (12) :28-29
[12]   Vortex solitons in moire optical lattices [J].
Ivanov, Sergey K. ;
Konotop, Vladimir V. ;
Kartashov, Yaroslav, V ;
Torner, Lluis .
OPTICS LETTERS, 2023, 48 (14) :3797-3800
[13]   On annihilation of the relativistic electron vortex pair in collisionless plasmas [J].
Lezhnin, K., V ;
Kamenets, F. F. ;
Esirkepov, T. Zh ;
Bulanov, S., V .
JOURNAL OF PLASMA PHYSICS, 2018, 84 (06)
[14]   Propagation of optical vortex solitons due to the Gouy phase in strongly nonlocal nonlinear media [J].
Wu Xiao-Fei ;
Deng Dong-Mei ;
Guo Qi .
CHINESE PHYSICS B, 2011, 20 (08)
[16]   Terahertz vortex generation methods rippled and vortex plasmas [J].
Sobhani, Hassan ;
Dadar, Elham .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (07) :1187-1196
[17]   Taming the emerging beams after the split of optical vortex solitons in a saturable medium [J].
Reyna, Albert S. ;
de Araujo, Cid B. .
PHYSICAL REVIEW A, 2016, 93 (01)
[18]   The vortex structure of magnetic solitons [J].
Kovalev, A. S. .
LOW TEMPERATURE PHYSICS, 2017, 43 (02) :274-283
[19]   Formation and stability of vortex solitons in nematic liquid crystals [J].
Jung, Pawel S. ;
Izdebskaya, Yana, V ;
Shvedov, Vladlen G. ;
Christodoulides, Demetrios N. ;
Krolikowski, Wieslaw .
OPTICS LETTERS, 2021, 46 (01) :62-65
[20]   Spatiotemporal optical vortex solitons: Dark solitons with transverse and tilted phase line singularities [J].
Porras, Miguel A. .
PHYSICAL REVIEW A, 2021, 104 (06)