Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato

被引:10
作者
He, Peiwen [1 ]
Zhang, Jingzhen [1 ]
Lv, Zunfu [1 ]
Cui, Peng [1 ]
Xu, Ximing [1 ]
George, Melvin Sidikie [2 ]
Lu, Guoquan [1 ]
机构
[1] Zhejiang A&F Univ, Inst Root & Tuber Crops, Coll Adv Agr Sci, Key Lab Qual Improvement Agr Prod Zhejiang Prov, Hangzhou 311300, Peoples R China
[2] Njala Univ, Crop Sci Dept, Njala Campus Private Mail Bag, Freetown 999127, Sierra Leone
关键词
Sweetpotato; Polygalacturonase gene family; Genome-wide identification; Gene expression; ENCODING POLYGALACTURONASE; MOLECULAR EVOLUTION; ARABIDOPSIS; ACID; DIVERGENCE; PROTEIN; PLANTS; LEADS;
D O I
10.1186/s12870-023-04272-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundPolygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified.ResultsIn this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes.ConclusionA total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Genome-Wide Identification and Expression Analysis of the GRAS Gene Family and Their Responses to Heat Stress in Cymbidium goeringii
    Huang, Ye
    Zheng, Qinyao
    Zhang, Meng-Meng
    He, Xin
    Zhao, Xuewei
    Wang, Linying
    Lan, Siren
    Liu, Zhong-Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [42] Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa
    Liu, Sha
    Chen, Ting
    Li, Xin
    Cui, Junjun
    Tian, Yinshuai
    FRONTIERS IN GENETICS, 2024, 15
  • [43] Genome-Wide Identification, Evolution, and Expression Analysis of the DIR Gene Family in Schima superba
    Chen, Changya
    Cai, Yanling
    He, Boxiang
    Zhang, Qian
    Liang, Dongcheng
    Wang, Yingli
    Chen, Hongpeng
    Yao, Jun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
  • [44] Genome-wide identification and expression of GRAS gene family members in cassava
    Shan, Zhongying
    Luo, Xinglu
    Wu, Meiyan
    Wei, Limei
    Fan, Zhupeng
    Zhu, Yanmei
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [45] Genome-wide Identification and Analysis of the MADS-box Gene Family in Melon
    Hao, Xin
    Fu, Yu
    Zhao, Wei
    Liu, Lifei
    Bade, Rengui
    Hasi, Agula
    Hao, Jinfeng
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2016, 141 (05) : 507 - 519
  • [46] Genome-wide identification and expression profiling of invertase gene family for abiotic stresses tolerance in Poncirus trifoliata
    Dahro, Bachar
    Wang, Yue
    Alhag, Ahmed
    Li, Chunlong
    Guo, Dayong
    Liu, Ji-Hong
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [47] Genome-wide identification, classification and expression of lipoxygenase gene family in pepper
    Sarde, Sandeep J.
    Kumar, Abhishek
    Remme, Rahima N.
    Dicke, Marcel
    PLANT MOLECULAR BIOLOGY, 2018, 98 (4-5) : 375 - 387
  • [48] Genome-Wide Identification and Expression Analysis of Expansin Gene Family in the Storage Root Development of Diploid Wild Sweetpotato Ipomoea trifida
    Li, Ming
    Chen, Lianfu
    Lang, Tao
    Qu, Huijuan
    Zhang, Cong
    Feng, Junyan
    Pu, Zhigang
    Peng, Meifang
    Lin, Honghui
    GENES, 2022, 13 (06)
  • [49] Genome-wide identification and expression profiling of the copper transporter gene family in Populus trichocarpa
    Zhang, Haizhen
    Yang, Jingli
    Wang, Weida
    Li, Dandan
    Hu, Xiaoqing
    Wang, Han
    Wei, Ming
    Liu, Quangang
    Wang, Zhanchao
    Li, Chenghao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 97 : 451 - 460
  • [50] Genome-wide identification and molecular evolution of NAC gene family in Dendrobium nobile
    Fu, Chun
    Liu, MingYu
    FRONTIERS IN PLANT SCIENCE, 2023, 14