Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato

被引:10
|
作者
He, Peiwen [1 ]
Zhang, Jingzhen [1 ]
Lv, Zunfu [1 ]
Cui, Peng [1 ]
Xu, Ximing [1 ]
George, Melvin Sidikie [2 ]
Lu, Guoquan [1 ]
机构
[1] Zhejiang A&F Univ, Inst Root & Tuber Crops, Coll Adv Agr Sci, Key Lab Qual Improvement Agr Prod Zhejiang Prov, Hangzhou 311300, Peoples R China
[2] Njala Univ, Crop Sci Dept, Njala Campus Private Mail Bag, Freetown 999127, Sierra Leone
关键词
Sweetpotato; Polygalacturonase gene family; Genome-wide identification; Gene expression; ENCODING POLYGALACTURONASE; MOLECULAR EVOLUTION; ARABIDOPSIS; ACID; DIVERGENCE; PROTEIN; PLANTS; LEADS;
D O I
10.1186/s12870-023-04272-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundPolygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified.ResultsIn this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes.ConclusionA total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber
    Hu Li-ping
    Zhang Feng
    Song Shu-hui
    Tang Xiao-wei
    Xu Hui
    Liu Guang-min
    Wang Ya-gin
    He Hong-ju
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (07) : 1486 - 1501
  • [32] Genome-wide identification and expression profiling analysis of trihelix gene family in tomato
    Yu, Chuying
    Cal, Xiaofeng
    Ye, Zhibiao
    Li, Hanxia
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 468 (04) : 653 - 659
  • [33] Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Neolamarckia cadamba
    Xu, Zuowei
    Liu, Yutong
    Fang, Huiting
    Wen, Yanqiong
    Wang, Ying
    Zhang, Jianxia
    Peng, Changcao
    Long, Jianmei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [34] Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae
    Zhang, Diyang
    Lan, Siren
    Yin, Wei-Lun
    Liu, Zhong-Jian
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [35] GENOME-WIDE IDENTIFICATION AND EXPRESSION PATTERN ANALYSIS OF THE TRIHELIX GENE FAMILY IN CUCUMBER
    Ma, Wanzheng
    Yang, Dekun
    Qiu, Mengru
    Gao, Jiong
    Cui, Rongjing
    PAKISTAN JOURNAL OF BOTANY, 2024, 56 (05) : 1853 - 1866
  • [36] Genome-Wide Identification and Expression Analysis of the Phytocyanin Gene Family in Nicotiana tabacum
    Wang, Peiling
    Xu, Xiaohong
    Li, Yong
    Zhang, Hecui
    Zhang, Xuejie
    Zhou, Siru
    Liu, Yimei
    Feng, Yunyan
    Zuo, Tonghong
    Zhu, Liquan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (05) : 1469 - 1492
  • [37] Genome-Wide Identification and Expression Analysis of TPS Gene Family in Liriodendron chinense
    Cao, Zijian
    Ma, Qianxi
    Weng, Yuhao
    Shi, Jisen
    Chen, Jinhui
    Hao, Zhaodong
    GENES, 2023, 14 (03)
  • [38] Genome-wide identification and expression analysis of the OSC gene family in Platycodon grandiflorus
    Wang, Xiaoqin
    Yan, Dong
    Chen, Ling
    PEERJ, 2024, 12
  • [39] Genome-wide identification and expression analysis of the GST gene family of Betula platyphylla
    Xiaoqing Hu
    Tong Zheng
    Wenjie Chen
    Huilei Duan
    Zhongjia Yuan
    Jiaqian An
    Huihui Zhang
    Xuemei Liu
    Journal of Forestry Research, 2025, 36 (01) : 463 - 480
  • [40] Genome-Wide Identification, Expression and Interaction Analysis of GLN Gene Family in Soybean
    Hao, Xin
    Zhang, Yiyan
    Zhang, Hui
    Yang, Gang
    Liu, Zhou
    Lv, Huiwei
    Zhou, Xiaomei
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2024, 46 (12) : 14154 - 14167