Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production

被引:68
作者
Vostakola, Mohsen Fallah [1 ]
Ozcan, Hasan [2 ,3 ]
El-Emam, Rami S. [4 ,5 ]
Horri, Bahman Amini [2 ]
机构
[1] Iran Univ Sci & Technol, Sch Met & Mat Engn, Tehran 1684613114, Iran
[2] Univ Surrey, Sch Chem & Chem Engn, Guildford GU2 7XH, England
[3] Ankara Yildirim Beyazit Univ, Dept Mech Engn, TR-06010 Ankara, Turkiye
[4] Ontario Tech Univ, Fac Engn & Appl Sci, Oshawa, ON LG1 0C5, Canada
[5] Mansoura Univ, Fac Engn, Mansoura 35516, Egypt
基金
英国工程与自然科学研究理事会;
关键词
hydrogen production; steam electrolysis; solid oxide electrolysers; nuclear thermal energy; water electrolysis; solid oxide electrolytes; POWER-TO-GAS; CERAMIC ELECTROCHEMICAL-CELLS; FUEL-CELLS; OXYGEN-ELECTRODE; HIGH-PERFORMANCE; WATER ELECTROLYSIS; THERMAL-EXPANSION; CO-ELECTROLYSIS; SEALING GLASS; PEROVSKITE ELECTRODES;
D O I
10.3390/en16083327
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen is known to be the carbon-neutral alternative energy carrier with the highest energy density. Currently, more than 95% of hydrogen production technologies rely on fossil fuels, resulting in greenhouse gas emissions. Water electrolysis is one of the most widely used technologies for hydrogen generation. Nuclear power, a renewable energy source, can provide the heat needed for the process of steam electrolysis for clean hydrogen production. This review paper analyses the recent progress in hydrogen generation via high-temperature steam electrolysis through solid oxide electrolysis cells using nuclear thermal energy. Protons and oxygen-ions conducting solid oxide electrolysis processes are discussed in this paper. The scope of this review report covers a broad range, including the recent advances in material development for each component (i.e., hydrogen electrode, oxygen electrode, electrolyte, interconnect, and sealant), degradation mechanisms, and countermeasures to mitigate them.
引用
收藏
页数:50
相关论文
共 258 条
[11]   Advances in Hydrogen Production from Natural Gas Reforming [J].
Boretti, Alberto ;
Banik, Bimal K. .
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (11)
[12]   Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator [J].
Boretti, Alberto ;
Nayfeh, Jamal ;
Al-Maaitah, Ayman .
FRONTIERS IN ENERGY RESEARCH, 2021, 9
[13]   Alkaline Water Electrolysis Powered by Renewable Energy: A Review [J].
Brauns, Joern ;
Turek, Thomas .
PROCESSES, 2020, 8 (02)
[14]  
Brien J.E.O., 2009, INT J HYDROGEN ENERG, V34, P4216, DOI [10.1016/j.ijhydene.2008.12.021, DOI 10.1016/J.IJHYDENE.2008.12.021]
[15]   SIMULATION OF SULFUR-IODINE THERMOCHEMICAL HYDROGEN PRODUCTION PLANT COUPLED TO HIGH-TEMPERATURE HEAT SOURCE [J].
Brown, Nicholas R. ;
Oh, Seungmin ;
Revankar, Shripad T. ;
Vierow, Karen ;
Rodriguez, Salvador ;
Cole, Randall, Jr. ;
Gauntt, Randall .
NUCLEAR TECHNOLOGY, 2009, 167 (01) :95-106
[16]   Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review [J].
Buttler, Alexander ;
Spliethoff, Hartmut .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2440-2454
[17]   Low-breakdown-voltage solar cells for shading-tolerant photovoltaic modules [J].
Calcabrini, Andres ;
Moya, Paul Procel ;
Huang, Ben ;
Kambhampati, Viswambher ;
Manganiello, Patrizio ;
Muttillo, Mirco ;
Zeman, Miro ;
Isabella, Olindo .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (12)
[18]   Nanostructured Co2P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP [J].
Callejas, Juan F. ;
Read, Carlos G. ;
Popczun, Eric J. ;
McEnaney, Joshua M. ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2015, 27 (10) :3769-3774
[19]   Enhanced thermodynamic modelling for hydrothermal liquefaction [J].
Cascioli, Alessandro ;
Baratieri, Marco .
FUEL, 2021, 298
[20]   Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells [J].
Cebollero, J. A. ;
Lahoz, R. ;
Laguna-Bercero, M. A. ;
Pena, J. T. ;
Larrea, A. ;
Orera, V. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (19) :13939-13948