Monodisperse CaCO3-loaded gelatin microspheres for reversing lactic acid-induced chemotherapy resistance during TACE treatment

被引:15
作者
Chen, Minjiang [1 ,2 ,4 ]
Guo, Xiaoju [1 ,3 ]
Shen, Lin [1 ]
Ding, Jiayi [1 ]
Yu, Junchao [1 ]
Chen, Xiaoxiao [1 ,2 ,4 ]
Wu, Fazong [4 ]
Tu, Jianfei [1 ,2 ,3 ,4 ]
Zhao, Zhongwei [1 ,2 ,3 ,4 ]
Nakajima, Mitsutoshi [5 ]
Song, Jingjing [1 ,2 ,4 ]
Shu, Gaofeng [1 ,2 ,4 ]
Ji, Jiansong [1 ,2 ,3 ,4 ]
机构
[1] Wenzhou Med Univ, Inst Imaging Diag & Minimally Invas Intervent Res, Key Lab Imaging Diag & Minimally Invas Intervent R, Affiliated Hosp 5, Lishui 323000, Peoples R China
[2] Lishui Univ, Affiliated Cent Hosp, Sch Med, Clin Coll, Lishui 323000, Peoples R China
[3] Shaoxing Univ, Sch Med, Shaoxing 312000, Peoples R China
[4] Zhejiang Univ, Sch Med, Dept radiol, Lishui Hosp, Lishui 323000, Peoples R China
[5] Univ Tsukuba, Fac Life & Environm Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, Japan
基金
中国国家自然科学基金;
关键词
Transarterial chemoembolization; Monodisperse microspheres; Microfluidic technique; Lactic acid; Calcium carbonate nanoparticles; TRANSCATHETER ARTERIAL CHEMOEMBOLIZATION; MICROCHANNEL EMULSIFICATION; EMBOLIC MICROSPHERES; NANOPARTICLES; MICROPARTICLES; ENCAPSULATION; FORMULATION; GROWTH; SIZE; PH;
D O I
10.1016/j.ijbiomac.2023.123160
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transarterial chemoembolization (TACE) is an important approach for the treatment of unresectable hepato-cellular carcinoma (HCC). However, the lactic acid-induced acidic tumor microenvironment (TME) may reduce the therapeutic outcome of TACE. Herein, monodispersed gelatin microspheres loaded with calcium carbonate nanoparticles (CaNPs@Gel-MS) as novel embolic agents were prepared by a simplified microfluidic device. It was found that the particle size and homogeneity of as-prepared CaNPs@Gel-MS were strongly dependent on the flow rates of continuous and dispersed phases, and the inner diameter of syringe needle. The introduction of CaNPs provided the gelatin microspheres with an enhanced ability to encapsulate the chemotherapeutic drug of DOX, as well as a pH-responsive sustained drug release behavior. In vitro results revealed that CaNPs@Gel-MS could largely increase the cellular uptake and chemotoxicity of DOX by neutralizing the lactic acid in the culture medium. In addition, CaNPs@Gel-MS exhibited an excellent and persistent embolic efficiency in a rabbit renal model. Finally, we found that TACE treatment with DOX-loaded CaNPs@Gel-MS (DOX/CaNPs@Gel-MS) had a much stronger ability to inhibit tumor growth than the DOX-loaded gelatin microspheres without CaNPs (DOX@Gel-MS). Overall, CaNPs@Gel-MS could be a promising embolic microsphere that can significantly improve anti-HCC ability by reversing lactic acid-induced chemotherapy resistance during TACE treatment.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin [J].
Abumanhal-Masarweh, Hanan ;
Koren, Lilach ;
Zinger, Assaf ;
Yaari, Zvi ;
Krinsky, Nitzan ;
Kaneti, Galoz ;
Dahan, Nitsan ;
Lupu-Haber, Yael ;
Suss-Toby, Edith ;
Weiss-Messer, Esther ;
Schlesinger-Laufer, Michal ;
Shainsky-Roitman, Janna ;
Schroeder, Avi .
JOURNAL OF CONTROLLED RELEASE, 2019, 296 :1-13
[2]   Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering [J].
Andreas, Kristin ;
Zehbe, Rolf ;
Kazubek, Maja ;
Grzeschik, Karolina ;
Sternberg, Nadine ;
Baeumler, Hans ;
Schubert, Helmut ;
Sittinger, Michael ;
Ringe, Jochen .
ACTA BIOMATERIALIA, 2011, 7 (04) :1485-1495
[3]   Microfluidic-prepared, monodisperse, X-ray-visible, embolic microspheres for non-oncological embolization applications [J].
Beh, Cyrus W. ;
Fu, Yingli ;
Weiss, Clifford R. ;
Hu, Charles ;
Arepally, Aravind ;
Mao, Hai-Quan ;
Wang, Tza-Huei ;
Kraitchman, Dara L. .
LAB ON A CHIP, 2020, 20 (19) :3591-3600
[4]  
Chao M, 2016, ELIFE, V5, DOI [10.7754/eLife.15691, 10.7554/eLife.15691]
[5]   HIF-2a-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma [J].
Chen, Minjiang ;
Shu, Gaofeng ;
Lv, Xiuling ;
Xu, Xiaoling ;
Lu, Chenying ;
Qiao, Enqi ;
Fang, Shiji ;
Shen, Lin ;
Zhang, Nannan ;
Wang, Jun ;
Chen, Chunmiao ;
Song, Jingjing ;
Liu, Zhuang ;
Du, Yongzhong ;
Ji, Jiansong .
BIOMATERIALS, 2022, 284
[6]   Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization [J].
Chen, Minjiang ;
Li, Jie ;
Shu, Gaofeng ;
Shen, Lin ;
Qiao, Enqi ;
Zhang, Nannan ;
Fang, Shiji ;
Chen, Xiaoxiao ;
Zhao, Zhongwei ;
Tu, Jianfei ;
Song, Jingjing ;
Du, Yongzhong ;
Ji, Jiansong .
JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)
[7]   Multifunctional Microspheres Dual-Loaded with Doxorubicin and Sodium Bicarbonate Nanoparticles to Introduce Synergistic Trimodal Interventional Therapy [J].
Chen, Minjiang ;
Xu, Xiaoling ;
Shu, Gaofeng ;
Lu, Chenying ;
Wu, Jiahui ;
Lv, Xiuling ;
Song, Jingjing ;
Wu, Fazong ;
Chen, Chunmiao ;
Zhang, Nannan ;
Du, Yuyin ;
Wang, Jun ;
Xu, Min ;
Fang, Shiji ;
Weng, Qiaoyou ;
Zhu, Yiling ;
Huang, Yuan ;
Zhao, Zhongwei ;
Du, Yongzhong ;
Ji, Jiansong .
ACS APPLIED BIO MATERIALS, 2021, 4 (04) :3476-3489
[8]   In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment [J].
Chen, Qian ;
Wang, Chao ;
Zhang, Xudong ;
Chen, Guojun ;
Hu, Quanyin ;
Li, Hongjun ;
Wang, Jinqiang ;
Wen, Di ;
Zhang, Yuqi ;
Lu, Yifei ;
Yang, Guang ;
Jiang, Chen ;
Wang, Jun ;
Dotti, Gianpietro ;
Gu, Zhen .
NATURE NANOTECHNOLOGY, 2019, 14 (01) :89-+
[9]   Recent Advances on Polymeric Beads or Hydrogels as Embolization Agents for Improved Transcatheter Arterial Chemoembolization (TACE) [J].
Chen, Yun-Ping ;
Zhang, Jiang-Ling ;
Zou, Yanhong ;
Wu, Yun-Long .
FRONTIERS IN CHEMISTRY, 2019, 7
[10]   CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy [J].
Dong, Ziliang ;
Feng, Liangzhu ;
Zhu, Wenwen ;
Sun, Xiaoqi ;
Gao, Min ;
Zhao, He ;
Chao, Yu ;
Liu, Zhuang .
BIOMATERIALS, 2016, 110 :60-70