On the joins of group rings

被引:1
作者
Chebolu, Sunil K. [1 ]
Merzel, Jonathan L. [2 ]
Minac, Jan [3 ]
Muller, Lyle [3 ]
Nguyen, Tung T. [3 ,4 ]
Pasini, Federico W. [5 ]
Tan, Nguyen Duy [6 ]
机构
[1] Illinois State Univ, Normal, IL 61761 USA
[2] Soka Univ Amer, Aliso Viejo, CA USA
[3] Univ Western Ontario, London, ON, Canada
[4] Onepick Inc, Coquitlam, BC, Canada
[5] Huron Univ Coll, London, ON, Canada
[6] Hanoi Univ Sci & Technol, Hanoi, Vietnam
基金
加拿大自然科学与工程研究理事会;
关键词
G-circulant matrices; Group of units; Group rings; Jacobson radical; Augmentation map; Artin-Wedderburn;
D O I
10.1016/j.jpaa.2023.107377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a collection {Gi}di=1 of finite groups and a ring R, we define a subring of the ring Mn(R) (n = sigma di=1 |Gi|) that encompasses all the individual group rings R[Gi] along the diagonal blocks as Gi-circulant matrices. The precise definition of this ring was inspired by a construction in graph theory known as the joined union of graphs. We call this ring the join of group rings and denote it by JG1,...,Gd(R). In this paper, we present a systematic study of the algebraic structure of JG1,...,Gd(R). We show that it has a ring structure and characterize its center, group of units, and Jacobson radical. When R = k is an algebraically closed field, we derive a formula for the number of irreducible modules over JG1,...,Gd(k). We also show how a blockwise extension of the Fourier transform provides both a generalization of the Circulant Diagonalization Theorem to joins of circulant matrices and an explicit isomorphism between the join algebra and its Wedderburn components. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Vaught's conjecture and group rings
    Puninskaya, V
    Toffalori, C
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) : 4267 - 4281
  • [42] A counterexample to the unit conjecture for group rings
    Gardam, Giles
    ANNALS OF MATHEMATICS, 2021, 194 (03) : 967 - 979
  • [43] Finite Subgroups of Group Rings: A Survey
    Margolis, Leo
    del Rio, Angel
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2019, 8 : 1 - 37
  • [44] A note on group identities in division rings
    Chebotar, MA
    Lee, PH
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 557 - 560
  • [45] Graded Reversibility in Integral Group Rings
    Yuanlin Li
    M. M. Parmenter
    Acta Applicandae Mathematicae, 2009, 108 : 129 - 133
  • [46] Finite subgroups in integral group rings
    Dokuchaev, MA
    Juriaans, SO
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (06): : 1170 - 1179
  • [47] A note on decompositions in abelian group rings
    Danchev, Peter V.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (01): : 73 - 76
  • [48] On duo, reversible and symmetric group rings
    Florez-Burbano, Brayan S.
    Holguin-Villa, Alexander
    Castillo, John H.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1680 - 1691
  • [49] The twisted derivation problem for group rings
    Chaudhuri, Dishari
    ARCHIV DER MATHEMATIK, 2021, 116 (04) : 391 - 401
  • [50] ℵ0-Injective group rings
    Shen, Liang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)