A Collocation Method for Fredholm Integral Equations of the First Kind via Iterative Regularization Scheme

被引:1
作者
Bechouat, Tahar [1 ]
机构
[1] Mohammed Cher Messaadia Univ, Fac Sci & Technol, Dept Math & Informat, BP 1553, Souk Ahras 41000, Algeria
关键词
ill-posed problems; iterative regularization scheme; Legendre collocation method; integral equations of the first kind; MULTISCALE GALERKIN METHOD; RECONSTRUCTION;
D O I
10.3846/mma.2023.16453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To solve the ill-posed integral equations, we use the regularized collo-cation method. This numerical method is a combination of the Legendre polyno-mials with non-stationary iterated Tikhonov regularization with fixed parameter. A theoretical justification of the proposed method under the required assumptions is detailed. Finally, numerical experiments demonstrate the efficiency of this method.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 24 条
[1]  
[Anonymous], 2009, Linear Operator Equations: Approximation and Regularization
[2]  
Canuto C., 2006, SCIENTIF COMPUT
[3]   A fast multiscale Galerkin method for the first kind ill-posed integral equations via Tikhonov regularization [J].
Chen, Zhongying ;
Cheng, Sirui ;
Nelakanti, Gnaneshwar ;
Yang, Hongqi .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (03) :565-582
[4]  
Cucker F, 2002, B AM MATH SOC, V39, P1
[6]  
Engl H. W., 1996, Regularization of inverse problems, V375
[7]  
Hamarik U., 2002, MATH MODEL ANAL, V7, P241
[8]   Nonstationary iterated Tikhonov regularization [J].
Hanke, M ;
Groetsch, CW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (01) :37-53
[9]   Projected nonstationary iterated Tikhonov regularization [J].
Huang, Guangxin ;
Reichel, Lothar ;
Yin, Feng .
BIT NUMERICAL MATHEMATICS, 2016, 56 (02) :467-487
[10]   APPROXIMATION OF GENERALIZED INVERSES BY ITERATED REGULARIZATION [J].
KING, JT ;
CHILLINGWORTH, D .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1979, 1 (05) :499-513