Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG pattern transformation based functional connectivity metric

被引:8
作者
Rahimi, Setareh [1 ]
Jackson, Rebecca [1 ,2 ,3 ]
Farahibozorg, Seyedeh-Rezvan [4 ]
Hauk, Olaf [1 ]
机构
[1] Univ Cambridge, MRC Cognit & Brain Sci Unit, 15 Chaucer Rd, Cambridge CB2 7EF, England
[2] Univ York, Dept Psychol, York, England
[3] Univ York, York Biomed Res Inst, York, England
[4] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, Oxford, England
基金
英国医学研究理事会;
关键词
Event-related connectivity; Semantic representation; Semantic control; k-means clustering; Source estimation; Leakage; MEG; EEG-DATA; SEMANTIC DEMENTIA; BRAIN CONNECTIVITY; GRANGER CAUSALITY; MEMORY RETRIEVAL; PARIETAL CORTEX; ANGULAR GYRUS; MEG; REPRESENTATION; COGNITION;
D O I
10.1016/j.neuroimage.2023.119958
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than unidimensional summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce timelagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI X at time point t(x). can linearly predict patterns of ROI Y at time point t(y). In the present study, we use simulations to demonstrate TL-MDPC's increased sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the unidimensional approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by unidimensional approaches.
引用
收藏
页数:16
相关论文
共 106 条
[1]   Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story [J].
Acosta-Cabronero, Julio ;
Patterson, Karalyn ;
Fryer, Tim D. ;
Hodges, John R. ;
Pengas, George ;
Williams, Guy B. ;
Nestor, Peter J. .
BRAIN, 2011, 134 :2025-2035
[2]   Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks [J].
Anderson, CW ;
Stolz, EA ;
Shamsunder, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (03) :277-286
[3]  
Anzellotti S., BIORXIV, V74856
[4]   Beyond Functional Connectivity: Investigating Networks of Multivariate Representations [J].
Anzellotti, Stefano ;
Coutanche, Marc N. .
TRENDS IN COGNITIVE SCIENCES, 2018, 22 (03) :258-269
[5]   Multivariate pattern dependence [J].
Anzellotti, Stefano ;
Caramazza, Alfonso ;
Saxe, Rebecca .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (11)
[6]   Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex [J].
Badre, D ;
Poldrack, RA ;
Paré-Blagoev, EJ ;
Insler, RZ ;
Wagner, AD .
NEURON, 2005, 47 (06) :907-918
[7]   Multi-dimensional connectivity: a conceptual and mathematical review [J].
Basti, Alessio ;
Nili, Hamed ;
Hauk, Olaf ;
Marzetti, Laura ;
Henson, Richard N. .
NEUROIMAGE, 2020, 221
[8]   Analysing linear multivariate pattern transformations in neuroimaging data [J].
Basti, Alessio ;
Mur, Marieke ;
Kriegeskorte, Nikolaus ;
Pizzella, Vittorio ;
Marzetti, Laura ;
Hauk, Olaf .
PLOS ONE, 2019, 14 (10)
[9]   Disclosing large-scale directed functional connections in MEG with the multivariate phase slope index [J].
Basti, Alessio ;
Pizzella, Vittorio ;
Chella, Federico ;
Romani, Gian Luca ;
Nolte, Guido ;
Marzetti, Laura .
NEUROIMAGE, 2018, 175 :161-175
[10]   A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls [J].
Bastos, Andre M. ;
Schoffelen, Jan-Mathijs .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2016, 9