A finite strain visco-hyperelastic damage model for rubber-like materials: theory and numerical implementation

被引:7
作者
Du, Zhenjiang [1 ]
Yang, Yan [1 ]
Wang, Zhongtong [2 ]
Fan, Xinggui [3 ]
Lu, Tongqing [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Engn Mech, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[3] China North Ind Grp Corp, Nav & Control Technol Res Inst, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Soft materials; Hyperelastic; Viscoelastic; Damage; UMAT; TIME-DEPENDENT BEHAVIOR; UNIFIED CDM MODEL; LARGE-DEFORMATION; DUCTILE FRACTURE; LOCAL CRITERION; VISCOELASTICITY; FORMULATION; BEARINGS;
D O I
10.1007/s10409-023-22473-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Many rubber-like materials exhibit hyperelastic, time-dependent, rate-dependent and progressive damage behaviors. In our previous work (Lu et al., 2020), we proposed a hyperelastic damage model to characterize the strain-softening behavior of soft materials. The model modifies the strain energy function of a single chain by introducing an internal damage variable D and then maps the deformation of chains to the macroscopic deformation. In this work, we extend this model to incorporate the time-dependent viscous effect using the Prony series-based nonlinear theory. We further implement the finite strain visco-hyperelastic damage model into finite element software ABAQUS by a user material subroutine UMAT. We use the experimental data of a kind of acrylic polymer under uniaxial tension in literature to calibrate the model parameters, including 4 time-independent parameters and 6 time-dependent parameters. We then use the calibrated parameters to simulate the uniaxial tension and stress relaxation of the acrylic polymer specimen with a complex geometry. The simulated results agree with the experimental data with a remarkable accuracy.
引用
收藏
页数:8
相关论文
共 45 条
[1]  
ABAQUS, 2011, ABAQUS 6 11 ANAL USE
[2]   Experiments and modeling of the thermo-mechanically coupled behavior of VHB [J].
Alkhoury, Keven ;
Bosnjak, Nikola ;
Wang, Yueping ;
Lee, Howon ;
Nadimpalli, Siva ;
Chester, Shawn A. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 242
[3]   Large strain time-dependent behavior of filled elastomers [J].
Bergström, JS ;
Boyce, MC .
MECHANICS OF MATERIALS, 2000, 32 (11) :627-644
[4]   Constitutive modeling of the large strain time-dependent behavior of elastomers [J].
Bergstrom, JS ;
Boyce, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (05) :931-954
[5]   A rheology model of high damping rubber bearings for seismic analysis: Identification of nonlinear viscosity [J].
Bhuiyan, A. R. ;
Okui, Y. ;
Mitamura, H. ;
Imai, T. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (7-8) :1778-1792
[6]  
Boltzmann L., 1878, ANN PHYS-NEW YORK, V241, P430, DOI [DOI 10.1002/ANDP.18782411107, 10.1002/ANDP.18782411107]
[7]   Hydrogels for Soft Machines [J].
Calvert, Paul .
ADVANCED MATERIALS, 2009, 21 (07) :743-756
[8]  
Christensen R. M., 1982, THEORY VISCOELASTICI
[9]   FOUNDATIONS OF LINEAR VISCOELASTICITY [J].
COLEMAN, BD ;
NOLL, W .
REVIEWS OF MODERN PHYSICS, 1961, 33 (02) :239-249
[10]   Bio-inspired soft robotics: Material selection, actuation, and design [J].
Coyle, Stephen ;
Majidi, Carmel ;
LeDuc, Philip ;
Hsia, K. Jimmy .
EXTREME MECHANICS LETTERS, 2018, 22 :51-59