Stabilizing High-Nickel Cathodes with High-Voltage Electrolytes

被引:43
作者
Su, Laisuo [1 ,2 ]
Jarvis, Karalee [1 ,2 ]
Charalambous, Harry [3 ]
Dolocan, Andrei [1 ,2 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA
关键词
high-nickel cathodes; high-voltage electrolytes; kinetic barrier; particle cracking; surface reconstruction; LAYERED OXIDE CATHODES; LITHIUM; PERFORMANCE; LIXNIO2; PHASES;
D O I
10.1002/adfm.202213675
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolytes connect the two electrodes in a lithium battery by providing Li+ transport channels between them. Advanced electrolytes are being explored with high-nickel cathodes and the lithium-metal anode to meet the high energy density and cycle life goals, but the origin of the performance differences with different electrolytes is not fully understood. Here, the mechanisms involved in protecting the high-capacity, cobalt-free cathode LiNiO2 with a model high-voltage electrolyte (HVE) are delineated. The kinetic barrier posed by a thick surface degradation layer with poor Li+-ion transport is found to be the major contributor to the fast capacity fade of LiNiO2 with the conventional carbonate electrolyte. In contrast, HVE reduces the side reactions between the electrolyte and the electrodes, leading to a thinner nano-interphase layer comprised of more beneficial species. Crucially, the HVE leads to a different surface reorganization pathway involving the formation of a thinner nanoscale LiNi2O4 spinel phase on the LiNiO2 surface. With a high 3D Li+-ion and electronic conductivity, the spinel LiNi2O4 reorganization nanolayer preserves fast Li+ transport across the cathode-electrolyte interface, reduces reaction heterogeneity in the electrode and alleviates intergranular cracking within secondary particles, resulting in superior long-term cycle life.
引用
收藏
页数:11
相关论文
共 39 条
[1]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[2]   LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES [J].
BROUSSELY, M ;
PERTON, F ;
BIENSAN, P ;
BODET, JM ;
LABAT, J ;
LECERF, A ;
DELMAS, C ;
ROUGIER, A ;
PERES, JP .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :109-114
[3]   Review-Localized High-Concentration Electrolytes for Lithium Batteries [J].
Cao, Xia ;
Jia, Hao ;
Xu, Wu ;
Zhang, Ji-Guang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
[4]   High-performance ZrO2-coated LiNiO2 cathode material [J].
Cho, J ;
Kim, TJ ;
Kim, YJ ;
Park, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A159-A161
[5]   First-Principles Simulation of the (Li-Ni-Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials [J].
Das, Hena ;
Urban, Alexander ;
Huang, Wenxuan ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7840-7851
[6]   Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from InSitu Gas Analysis and Operando X-Ray Diffraction [J].
de Biasi, Lea ;
Schiele, Alexander ;
Roca-Ayats, Maria ;
Garcia, Grecia ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen .
CHEMSUSCHEM, 2019, 12 (10) :2240-2250
[7]   An overview of the Li(Ni,M)O2 systems:: syntheses, structures and properties [J].
Delmas, C ;
Ménétrier, M ;
Croguennec, L ;
Saadoune, I ;
Rougier, A ;
Pouillerie, C ;
Prado, G ;
Grüne, M ;
Fournès, L .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :243-253
[8]   Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2 C cycle aging [J].
Dubarry, Matthieu ;
Truchot, Cyril ;
Liaw, Bor Vann ;
Gering, Kevin ;
Sazhin, Sergiy ;
Jamison, David ;
Michelbacher, Christopher .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10336-10343
[9]   CHEMICAL SYNTHESIS AND PROPERTIES OF LI-1-DELTA-XNI1+DELTA-O2 AND LI[NI2]O4 [J].
DUTTA, G ;
MANTHIRAM, A ;
GOODENOUGH, JB ;
GRENIER, JC .
JOURNAL OF SOLID STATE CHEMISTRY, 1992, 96 (01) :123-131
[10]   High-Voltage Electrolyte Chemistry for Lithium Batteries [J].
Guo, Kanglong ;
Qi, Shihan ;
Wang, Huaping ;
Huang, Junda ;
Wu, Mingguang ;
Yang, Yulu ;
Li, Xiu ;
Ren, Yurong ;
Ma, Jianmin .
SMALL SCIENCE, 2022, 2 (05)