An Alternative Numerical Scheme to Approximate the Early Exercise Boundary of American Options

被引:0
作者
Veliu, Denis [1 ]
De Marchis, Roberto [2 ]
Marino, Mario [3 ]
Martire, Antonio Luciano [4 ]
机构
[1] Metropolitan Univ Tirana, Dept Finance Banking, Tirana 1000, Albania
[2] Sapienza Univ Rome, MEMOTEF Dept, I-00185 Rome, Italy
[3] Univ Trieste, DEAMS Bruno Finetti, I-34127 Trieste, Italy
[4] Roma Tre Univ, Dept Business Econ, I-00185 Rome, Italy
关键词
American put pricing; nonstandard Volterra integral equations; free boundary problem; VALUATION;
D O I
10.3390/math11010187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a new numerical method for the approximation of the early exercise boundary in the American option pricing problem. In more detail, using the mean-value theorem for integrals, we provide a flexible algorithm that allows for reaching a more accurate numerical solution with fewer calculations rather than other previously described methods.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
AitSahlia F., 1999, Journal of Computational Finance, V3, P33, DOI DOI 10.21314/JCF.1999.039
[2]   EFFICIENT ANALYTIC APPROXIMATION OF AMERICAN OPTION VALUES [J].
BARONEADESI, G ;
WHALEY, RE .
JOURNAL OF FINANCE, 1987, 42 (02) :301-320
[3]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[4]   American option valuation: New bounds, approximations, and a comparison of existing methods [J].
Broadie, M ;
Detemple, J .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (04) :1211-1250
[5]  
Brunner H., 2004, COLLOCATION METHODS
[6]  
BRUNNER H., 2017, Cambridge Monographs on Applied and Computational Mathematics
[7]  
BUNCH DS, 1992, J FINANC, V47, P809
[8]  
Carr P., 1992, Mathematical Finance, V2, P87, DOI DOI 10.1111/J.1467-9965.1992.TB00040.X
[9]   A mathematical analysis of the optimal exercise boundary for American put options [J].
Chen, Xinfu ;
Chadam, John .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (05) :1613-1641
[10]   Representation of American Option Prices Under Heston Stochastic Volatility Dynamics Using Integral Transforms [J].
Chiarella, Carl ;
Ziogas, Andrew ;
Ziveyi, Jonathan .
CONTEMPORARY QUANTITATIVE FINANCE: ESSAYS IN HONOUR OF ECKHARD PLATEN, 2010, :281-+