Painleve integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev-Petviashvili equations

被引:117
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
Kadomtsev-Petviashvili equation; Painleve integrability; Multiple soliton solutions; Lump solutions; NONLINEAR EVOLUTION-EQUATIONS; MULTIPLE SOLITON-SOLUTIONS; LOCALIZED STRUCTURES; WAVE SOLUTIONS; LAW; BOUSSINESQ; SELECTION; MEDIA;
D O I
10.1007/s11071-022-08074-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The current work introduces two extended (3 + 1)- and (2 + 1)-dimensional Painleve integrable Kadomtsev-Petviashvili (KP) equations. The integrability feature of both extended equations is carried out by using the Painleve test. We use the Hirota's bilinear strategy to explore multiple-soliton solutions for both extended models. Moreover, we formally furnish a class of lump solutions, for each extended KP equation, by using distinct values of the parameters. Proper graphs are furnished to highlight the characteristics of the lump, contour, and density solutions.
引用
收藏
页码:3623 / 3632
页数:10
相关论文
共 34 条
[1]   Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation [J].
Khalique, Chaudry Masood ;
Mhlanga, Isaiah Elvis .
Applied Mathematics and Nonlinear Sciences, 2018, 3 (01) :241-254
[2]   Stationary solution of the nonlinear Schrodinger's equation with log law nonlinearity by Lie symmetry analysis [J].
Biswas, Anjan ;
Khalique, Chaudry Masood .
WAVES IN RANDOM AND COMPLEX MEDIA, 2011, 21 (04) :554-558
[3]   Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method [J].
Ebaid, A. .
PHYSICS LETTERS A, 2007, 365 (03) :213-219
[4]   New types of exact solutions for nonlinear Schrodinger equation with cubic nonlinearity [J].
Ebaid, Abdelhalim ;
Khaled, S. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) :1984-1992
[5]  
Hirota R., 2004, The direct method in soliton theory
[6]   Frontiers in multidimensional self-trapping of nonlinear fields and matter [J].
Kartashov, Yaroslav V. ;
Astrakharchik, Gregory E. ;
Malomed, Boris A. ;
Torner, Lluis .
NATURE REVIEWS PHYSICS, 2019, 1 (03) :185-197
[7]   Painleve analysis and invariant solutions of generalized fifth-order nonlinear integrable equation [J].
Kaur, Lakhveer ;
Wazwaz, Abdul-Majid .
NONLINEAR DYNAMICS, 2018, 94 (04) :2469-2477
[8]   Exact solutions of the (2+1)-dimensional Zakharov-Kuznetsov modified equal width equation using Lie group analysis [J].
Khalique, C. M. ;
Adem, K. R. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :184-189
[9]   Solutions and conservation laws of Benjamin-Bona-Mahony-Peregrine equation with power-law and dual power-law nonlinearities [J].
Khalique, Chaudry Masood .
PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (03) :413-427
[10]   Exact solutions for a class of nonlinear evolution equations: A unified ansatze approach [J].
Khuri, S. A. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1181-1188