共 52 条
- [41] Saeys Y, 2008, LECT NOTES ARTIF INT, V5212, P313, DOI 10.1007/978-3-540-87481-2_21
- [42] Sagawa Shiori, 2020, ICLR
- [43] Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data [J]. FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, : 200 - 209
- [44] Taskesen B., 2020, ARXIV200709530
- [45] Tommasi T, 2017, ADV COMPUT VIS PATT, P37, DOI 10.1007/978-3-319-58347-1_2
- [46] Verma S, 2018, 2018 IEEE/ACM INTERNATIONAL WORKSHOP ON SOFTWARE FAIRNESS (FAIRWARE 2018), P1, DOI [10.1145/3194770.3194776, 10.23919/FAIRWARE.2018.8452913]
- [47] Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1748 - 1757
- [49] Yurochkin Mikhail, 2020, P INT C LEARN REPR I
- [50] Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment [J]. PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, : 1171 - 1180