BAYESIAN STATE SPACE MODELS IN MACROECONOMETRICS

被引:8
作者
Chan, Joshua C. C. [1 ,2 ]
Strachan, Rodney W. [3 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] UTS, Ultimo, Australia
[3] Univ Queensland, St Lucia, Qld, Australia
基金
澳大利亚研究理事会;
关键词
Dimension reduction; Filter; High-dimension; Non-Gaussian: Non-linear; Smoother; State space model; TIME-SERIES; STOCHASTIC VOLATILITY; US INFLATION; VECTOR AUTOREGRESSIONS; SIMULATION SMOOTHER; PARAMETER EXPANSION; PARTICLE FILTERS; INFERENCE; SHRINKAGE; TREND;
D O I
10.1111/joes.12405
中图分类号
F [经济];
学科分类号
02 ;
摘要
State space models play an important role in macroeconometric analysis and the Bayesian approach has been shown to have many advantages. This paper outlines recent developments in state space modelling applied to macroeconomics using Bayesian methods. We outline the directions of recent research, specifically the problems being addressed and the solutions proposed. After presenting a general form for the linear Gaussian model, we discuss the interpretations and virtues of alternative estimation routines and their outputs. This discussion includes the Kalman filter and smoother, and precision-based algorithms. As the advantages of using large models have become better understood, a focus has developed on dimension reduction and computational advances to cope with high-dimensional parameter spaces. We give an overview of a number of recent advances in these directions. Many models suggested by economic theory are either non-linear or non-Gaussian, or both. We discuss work on the particle filtering approach to such models as well as other techniques that use various approximations - to either the time t state and measurement equations or to the full posterior for the states - to obtain draws.
引用
收藏
页码:58 / 75
页数:18
相关论文
共 50 条
  • [21] Structured Variational Bayesian Inference for Gaussian State-Space Models With Regime Switching
    Petetin, Yohan
    Janati, Yazid
    Desbouvries, Francois
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1953 - 1957
  • [22] Bayesian state space models with time-varying parameters: interannual temperature forecasting
    Kim, Yongku
    Berliner, L. Mark
    ENVIRONMETRICS, 2012, 23 (05) : 466 - 481
  • [23] Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 2 - 20
  • [24] Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
    Cox, Benjamin
    Elvira, Victor
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1922 - 1937
  • [25] Parsimony inducing priors for large scale state-space models
    Lopes, Hedibert F.
    McCulloch, Robert E.
    Tsay, Ruey S.
    JOURNAL OF ECONOMETRICS, 2022, 230 (01) : 39 - 61
  • [26] Stochastic and deterministic trend in state space models
    Jorge-Gonzalez, Elisa
    Gonzalez-Davila, Enrique
    Martin-Rivero, Raquel
    Lorenzo-Diaz, Domingo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (10) : 2809 - 2822
  • [27] A Bayesian robust Kalman smoothing framework for state-space models with uncertain noise statistics
    Dehghannasiri, Roozbeh
    Qian, Xiaoning
    Dougherty, Edward R.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
  • [28] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [29] SMC2: an efficient algorithm for sequential analysis of state space models
    Chopin, N.
    Jacob, P. E.
    Papaspiliopoulos, O.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 397 - 426
  • [30] A Bayesian MCMC based estimation of Long memory in state space model
    Li, Yushu
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 1341 - 1352