Dual assistance of surfactants in glycerol organosolv pretreatment and enzymatic hydrolysis of lignocellulosic biomass for bioethanol production

被引:20
|
作者
Song, Guojie [1 ]
Sun, Chihe [1 ]
Madadi, Meysam [1 ]
Dou, Shaohua [2 ]
Yan, Junshu [3 ]
Huan, Hailin [3 ]
Aghbashlo, Mortaza [4 ]
Tabatabaei, Meisam [5 ,6 ]
Sun, Fubao [1 ]
Ashori, Alireza [7 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
[2] Dalian Univ, Coll Life & Hlth, Dalian 116622, Peoples R China
[3] Jiangsu Acad Agr Sci, Inst Anim Sci, Nanjing 210014, Peoples R China
[4] Univ Tehran, Coll Agr & Nat Resources, Fac Agr Engn & Technol, Dept Mech Engn Agr Machinery, Karaj, Iran
[5] Univ Malaysia Terengganu, Higher Inst Ctr Excellence HICoE, Inst Trop Aquaculture & Fisheries AKUATROP, Kuala Nerus 21030, Terengganu, Malaysia
[6] Saveetha Inst Med & Tech Sci, Saveetha Dent Coll, Dept Biomat, Chennai 600077, India
[7] Iranian Res Org Sci & Technol, Dept Chem Technol, Tehran, Iran
基金
中国国家自然科学基金;
关键词
Sugarcane bagasse; Surfactant-assisted pretreatment; High-solid enzymatic hydrolysis; Cellulosic ethanol; Economic analysis; ETHANOL-PRODUCTION; DILUTE-ACID; WHEAT-STRAW; HIGH-SOLIDS; SACCHARIFICATION; FERMENTATION; ECONOMICS; ASPEN;
D O I
10.1016/j.biortech.2024.130358
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study investigated an innovative strategy of incorporating surfactants into alkaline-catalyzed glycerol pretreatment and enzymatic hydrolysis to improve lignocellulosic biomass (LCB) conversion efficiency. Results revealed that adding 40 mg/g PEG 4000 to the pretreatment at 195 degrees C obtained the highest glucose yield (84.6%). This yield was comparable to that achieved without surfactants at a higher temperature (240 degrees C), indicating a reduction of 18.8% in the required heat input. Subsequently, Triton X-100 addition during enzymatic hydrolysis of PEG 4000-assisted pretreated substrate increased glucose yields to 92.1% at 6 FPU/g enzyme loading. High-solid fed-batch semi-simultaneous saccharification and co-fermentation using this dual surfactant strategy gave 56.4 g/L ethanol and a positive net energy gain of 1.4 MJ/kg. Significantly, dual assistance with surfactants rendered 56.3% enzyme cost savings compared to controls without surfactants. Therefore, the proposed surfactant dual -assisted promising approach opens the gateway to economically viable enzymemediated LCB biorefinery.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production
    Ingle, Avinash P.
    Rathod, Jyoti
    Pandit, Raksha
    da Silva, Silvio Silverio
    Rai, Mahendra
    CELLULOSE, 2017, 24 (12) : 5529 - 5540
  • [22] CELL 154-Enzymatic hydrolysis of lignocellulosic biomass in yellow pine sawdust for production of bioethanol
    Simon, Arlyne B.
    Shin, Hyun-Dong
    Chen, Rachel Ruizhen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 768 - 768
  • [23] Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol
    Ojeda, K.
    Kafarov, V.
    CHEMICAL ENGINEERING JOURNAL, 2009, 154 (1-3) : 390 - 395
  • [24] Wildflower mixtures for bioethanol production - Pretreatment and enzymatic hydrolysis
    Heller, Daniel
    Einfalt, Daniel
    BIOMASS & BIOENERGY, 2020, 141
  • [25] Role of organosolv pretreatment on enzymatic hydrolysis of mustard biomass for increased saccharification
    Sukhendra Singh
    Rupika Sinha
    Subir Kundu
    Biomass Conversion and Biorefinery, 2022, 12 : 1657 - 1668
  • [26] Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges
    Zhou, Ziyuan
    Ouyang, Denghao
    Liu, Dehua
    Zhao, Xuebing
    BIORESOURCE TECHNOLOGY, 2023, 367
  • [27] Alkali Pretreatment for Bioethanol Fuel Production from Lignocellulosic Biomass
    Ikeda, Tsutomu
    Sugimoto, Tomoko
    Nojiri, Masanobu
    Magara, Kengo
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON PULPING, PAPERMAKING AND BIOTECHNOLOGY 2008: ICPPB '08, VOL I, 2008, : 157 - 161
  • [28] Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process
    Nitsos, Christos K.
    Matis, Konstantinos A.
    Triantafyllidis, Kostas S.
    CHEMSUSCHEM, 2013, 6 (01) : 110 - 122
  • [29] Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview
    Rezania, Shahabaldin
    Oryani, Bahareh
    Cho, Jinwoo
    Talaiekhozani, Amirreza
    Sabbagh, Farzaneh
    Hashemi, Beshare
    Rupani, Parveen Fatemeh
    Mohammadi, Ali Akbar
    ENERGY, 2020, 199
  • [30] Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources
    Vasic, Katja
    Knez, Zeljko
    Leitgeb, Maja
    MOLECULES, 2021, 26 (03):