Machine learning-based prediction of medication refill adherence among first-time insulin users with type 2 diabetes

被引:2
作者
Chen, Ya-Lin [1 ,5 ]
Nguyen, Phung-Anh [2 ,3 ,4 ]
Chien, Chia-Hui [5 ,6 ,7 ]
Hsu, Min-Huei [8 ,9 ]
Liou, Der-Ming [5 ]
Yang, Hsuan-Chia [3 ,5 ,6 ,10 ,11 ]
机构
[1] Univ Washington, Dept Biomed Informat & Med Educ, Seattle, WA USA
[2] Taipei Med Univ, Clin Data Ctr, Off Data Sci, Taipei, Taiwan
[3] Taipei Med Univ, Taipei Med Univ Hosp, Clin Big Data Res Ctr, Taipei 110301, Taiwan
[4] Taipei Med Univ, Coll Management, Res Ctr Hlth Care Ind Data Sci, Taipei, Taiwan
[5] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat, Taipei, Taiwan
[6] Taipei Med Univ, Coll Med Sci & Technol, Int Ctr Hlth Informat Technol ICHIT, Taipei, Taiwan
[7] Taipei Med Univ, Off Med Affairs, Taipei, Taiwan
[8] Taipei Med Univ, Off Data Sci, Taipei, Taiwan
[9] Taipei Med Univ, Grad Inst Data Sci, Coll Management, Taipei, Taiwan
[10] Taipei Med Univ, Wan Fang Hosp, Res Ctr Big Data & Meta Anal, Taipei, Taiwan
[11] 9F,Educ & Res Bldg,Shuang Ho Campus,301,Yuantong R, New Taipei City 235, Taiwan
关键词
Observational study; Machine learning; Medication adherence; Type; 2; diabetes; Insulin; PERSISTENCE; MELLITUS; THERAPY; BIAS;
D O I
10.1016/j.diabres.2023.111033
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: The prevalence of Type 2 Diabetes Mellitus (T2DM) is projected to be 7 % in 2030. Despite its need for long-term diabetes care, the adherence rate of injectable medications such as insulin is around 60 %, lower than the acceptable threshold of 80 %. This study aims to create classification models to predict insulin adherence among adult T2DM naive insulin users.Methods: Clinical data were extracted from Taipei Medical University Clinical Research Database (TMUCRD) from January 1st, 2004 to December 30th, 2020. A patient was regarded as adherent if his/her medication possession ratio (MPR) was at least 80 %. Seven domains of predictors were created, including demographics, baseline medications, baseline comorbidities, baseline laboratory data, healthcare resource utilization, index insulins, and the concomitant non-insulin T2DM medications. We built two Xgboost models for internal and external testing respectively.Results: Using a cohort of 4134 patients from Taiwan, our model achieved the Area Under the curve of the Receiver Operating Characteristic (AUROC) of the internal test was 0.782 and the AUROC of the external test was 0.771. the SHAP (SHapley Additive exPlanations) value showed that the number of prescribed medications, the number of outpatient visits, and laboratory data were predictive of future insulin adherence.Conclusions: This is the first study to predict adherence among adult naive insulin users. The developed model is a potential clinical decision support tool to identify possible non-adherent patients for healthcare providers to design individualized education plans.
引用
收藏
页数:7
相关论文
共 38 条
[11]   Improving the Prediction of Medication Compliance The Example of Bisphosphonates for Osteoporosis [J].
Curtis, Jeffrey R. ;
Xi, Juan ;
Westfall, Andrew O. ;
Cheng, Hong ;
Lyles, Kenneth ;
Saag, Kenneth G. ;
Delzell, Elizabeth .
MEDICAL CARE, 2009, 47 (03) :334-341
[12]   Real-world factors affecting adherence to insulin therapy in patients with Type 1 or Type 2 diabetes mellitus: a systematic review [J].
Davies, M. J. ;
Gagliardino, J. J. ;
Gray, L. J. ;
Khunti, K. ;
Mohan, V. ;
Hughes, R. .
DIABETIC MEDICINE, 2013, 30 (05) :512-524
[13]   Observing versus Predicting: Initial Patterns of Filling Predict Long-Term Adherence More Accurately Than High-Dimensional Modeling Techniques [J].
Franklin, Jessica M. ;
Shrank, William H. ;
Lii, Joyce ;
Krumme, Alexis K. ;
Matlin, Olga S. ;
Brennan, Troyen A. ;
Choudhry, Niteesh K. .
HEALTH SERVICES RESEARCH, 2016, 51 (01) :220-239
[14]   Prediction and pattern analysis of medication refill adherence through electronic health records and dispensation data [J].
Galozy A. ;
Nowaczyk S. .
Journal of Biomedical Informatics: X, 2020, 6-7
[15]   A Clinical Prediction Model of Medication Adherence in Hypertensive Patients in a Chinese Community Hospital in Beijing [J].
Gao, Wenjuan ;
Liu, Hong ;
Ge, Caiying ;
Liu, Xinying ;
Jia, Hongyan ;
Wu, Hao ;
Peng, Xiaoxia .
AMERICAN JOURNAL OF HYPERTENSION, 2020, 33 (11) :1038-1046
[16]   Clinical inertia, reverse clinical inertia, and medication non-adherence in type 2 diabetes [J].
Giugliano, D. ;
Maiorino, M., I ;
Bellastella, G. ;
Esposito, K. .
JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2019, 42 (05) :495-503
[17]   Predicting adherence of patients with HF through machine learning techniques [J].
Karanasiou, Georgia Spiridon ;
Tripoliti, Evanthia Eleftherios ;
Papadopoulos, Theofilos Grigorios ;
Kalatzis, Fanis Georgios ;
Goletsis, Yorgos ;
Naka, Katerina Kyriakos ;
Bechlioulis, Aris ;
Errachid, Abdelhamid ;
Fotiadis, Dimitrios Ioannis .
HEALTHCARE TECHNOLOGY LETTERS, 2016, 3 (03) :165-170
[18]   Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends [J].
Khan, Moien Abdul Basith ;
Hashim, Muhammad Jawad ;
King, Jeffrey Kwan ;
Govender, Romona Devi ;
Mustafa, Halla ;
Al Kaabi, Juma .
JOURNAL OF EPIDEMIOLOGY AND GLOBAL HEALTH, 2020, 10 (01) :107-111
[19]   Machine learning models to identify low adherence to influenza vaccination among Korean adults with cardiovascular disease [J].
Kim, Moojung ;
Kim, Young Jae ;
Park, Sung Jin ;
Kim, Kwang Gi ;
Oh, Pyung Chun ;
Kim, Young Saing ;
Kim, Eun Young .
BMC CARDIOVASCULAR DISORDERS, 2021, 21 (01)
[20]  
Krumme AA, 2017, J MANAG CARE SPEC PH, V23, P494, DOI 10.18553/jmcp.2017.23.4.494