Novel Antioxidant Peptides Derived from Feather Keratin Alleviate H2O2-Induced Oxidative Damage in HepG2 Cells via Keap1/Nrf2 Pathway

被引:7
|
作者
Pei, Xiao-Dong [1 ]
He, Yi-Ning [1 ]
Wu, Qing-Ling [1 ]
Zhang, Yan-Mei [1 ]
Li, Fan [1 ]
Jiao, Dao-Quan [1 ]
Liu, Xiao-Ling [1 ]
Wang, Cheng-Hua [1 ]
机构
[1] Guangxi Univ, Coll Light Ind & Food Engn, Nanning 530004, Peoples R China
关键词
oxidative damage; featherkeratin; antioxidantpeptide; Keap1/Nrf2; pathway; CHINESE BAIJIU; STRESS; IDENTIFICATION; PURIFICATION; ENZYME;
D O I
10.1021/acs.jafc.3c05088
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Reactive oxygen species (ROS) are crucial for signal transduction and the maintenance of cellular homeostasis. However, superfluous ROS may engender chronic pathologies. Feather keratin is a promising new source of antioxidant peptides that can eliminate excess ROS and potentially treat oxidative stress-related diseases, but the underlying mechanisms have remained elusive. This study investigated the antioxidant effects and mechanisms against H2O2-induced oxidative damage in HepG2 cells of the two latest discovered antioxidant peptides, CRPCGPTP (CP-8) and ANSCNEPCVR (AR-10), first decrypted from feather keratin. The results revealed that CP-8 and AR-10 did not exhibit cytotoxicity to HepG2 cells while reducing intracellular ROS accumulation. Simultaneously, they enhanced the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), thus alleviating H2O2-induced cell apoptosis. Molecular docking analysis demonstrated that CP-8, AR-10 interacted well with the key amino acids in the Kelch domain of Keap1, thereby directly disrupting the Keap1-Nrf2 interaction. The peptides' biosafety and antioxidant activity via Keap1/Nrf2 signaling lay the groundwork for further animal studies and applications as functional food additives.
引用
收藏
页码:20062 / 20072
页数:11
相关论文
共 50 条
  • [41] Engeletin Attenuates Aβ1-42-Induced Oxidative Stress and Neuroinflammation by Keap1/Nrf2 Pathway
    Huang, Zhixiong
    Ji, Hu
    Shi, Junfeng
    Zhu, Xinchen
    Zhi, Zhongwen
    INFLAMMATION, 2020, 43 (05) : 1759 - 1771
  • [42] The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic
    O'Connell, Maria A.
    Hayes, John D.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2015, 43 : 687 - 689
  • [43] Tangeretin alleviates inflammation and oxidative response induced by spinal cord injury by activating the Sesn2/Keap1/Nrf2 pathway
    Peng, Birong
    Hu, Jinwei
    Sun, Yuanfang
    Huang, Yating
    Peng, Qingshan
    Zhao, Weiwen
    Xu, Wenning
    Zhu, Lixin
    PHYTOTHERAPY RESEARCH, 2024, 38 (09) : 4555 - 4569
  • [44] Cyanidin-3-glucoside prevents hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells
    Tan, Jiaqi
    Li, Pengcheng
    Xue, Hongkun
    Li, Qian
    BIOTECHNOLOGY LETTERS, 2020, 42 (11) : 2453 - 2466
  • [45] Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells
    Wu, Zhiming
    Wang, Huangen
    Fang, Sunyang
    Xu, Chaoyang
    MOLECULAR MEDICINE REPORTS, 2018, 18 (05) : 4163 - 4174
  • [46] Simvastatin Protects Human Melanocytes from H2O2-Induced Oxidative Stress by Activating Nrf2
    Chang, Yuqian
    Li, Shuli
    Guo, Weinan
    Yang, Yuqi
    Zhang, Weigang
    Zhang, Qian
    He, Yuanmin
    Yi, Xiuli
    Cui, Tingting
    An, Yawen
    Song, Pu
    Jian, Zhe
    Liu, Ling
    Li, Kai
    Wang, Gang
    Gao, Tianwen
    Wang, Lin
    Li, Chunying
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (06) : 1286 - 1296
  • [47] Regulation of H2O2-induced cells injury through Nrf2 signaling pathway: An introduction of a novel cysteic acid-modified peptide
    Jin, Huoxi
    Li, Yan
    Shen, Kai
    Li, Jie
    Yu, Fangmiao
    Yang, Zuisu
    BIOORGANIC CHEMISTRY, 2021, 110
  • [48] Metformin Promotes Differentiation and Attenuates H2O2-Induced Oxidative Damage of Osteoblasts via the PI3K/AKT/Nrf2/HO-1 Pathway
    Yang, Keda
    Cao, Fangming
    Qiu, Shui
    Jiang, Wen
    Tao, Lin
    Zhu, Yue
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [49] Paeoniflorin alleviates hypoxia/reoxygenation injury in HK-2 cells by inhibiting apoptosis and repressing oxidative damage via Keap1/Nrf2/HO-1 pathway
    Xing, Di
    Ma, Yihua
    Lu, Miaomiao
    Liu, Wenlin
    Zhou, Hongli
    BMC NEPHROLOGY, 2023, 24 (01)
  • [50] Morroniside Protects Human Granulosa Cells against H2O2-Induced Oxidative Damage by Regulating the Nrf2 and MAPK Signaling Pathways
    Ma, Yucong
    Hao, Guimin
    Lin, Xiaohua
    Zhao, Zhiming
    Yang, Aimin
    Cao, Yucong
    Zhang, Shuancheng
    Fan, Lijie
    Geng, Jingran
    Zhang, Yu
    Chen, Jingwei
    Song, Cuimiao
    He, Ming
    Du, Huilan
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022