Deep learning-assisted phase equilibrium analysis for producing natural hydrogen

被引:32
|
作者
Zhang, Tao [1 ]
Zhang, Yanhui [1 ]
Katterbauer, Klemens [2 ]
Al Shehri, Abdallah [2 ]
Sun, Shuyu [1 ]
Hoteit, Ibrahim [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[2] Saudi Aramco, Dhahran, Saudi Arabia
关键词
White hydrogen; Phase equilibrium; Flash calculation; Thermodynamics -informed neural; network; EQUATION-OF-STATE; HYDRATE; PROPANE; VOLUME; CAPILLARITY; TEMPERATURE; MIXTURES; DIOXIDE; MOLES;
D O I
10.1016/j.ijhydene.2023.09.097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of natural hydrogen is an emerging topic in the current energy transition trend. The production process involves compositional multiphase flow via subsurface porous media. This makes studying the compositional phase equilibrium behavior essential for reliable reservoir simulation and prediction. Herein, we develop an iterative flash calculation scheme and a deep learning algorithm using a thermodynamics-informed neural network (TINN) to perform accurate, robust, and fast phase equilibrium calculations for realistic fluid mixtures of natural hydrogen. The application of TINN architecture can accelerate the calculations for nearly 20 times. The effect of capillarity on phase equilibrium states is demonstrated. Based on simulation results, suggestions for the natural hydrogen industry chain are provided to control the possible phase transitions under certain environmental conditions that may be observed in the natural hydrogen reservoirs, storage and transportation facilities. The extremely low critical temperature of hydrogen challenges the robustness of flash calculations but facilitates the separation of impurities by liquefying certain undesired species. Moreover, phase transitions under control can be an effective approach for carbon dioxide capture and sequestration with optimized operating conditions over the phase equilibrium analysis. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:473 / 486
页数:14
相关论文
共 50 条
  • [1] Deep learning-assisted Hubble parameter analysis
    Salti, Mehmet
    Kangal, Evrim Ersin
    Zengin, Bilgin
    MODERN PHYSICS LETTERS A, 2024, 39 (04)
  • [2] Deep learning-assisted analysis of automobiles handling performances
    Sapienza, Davide
    Paganelli, Davide
    Prato, Marco
    Bertogna, Marko
    Spallanzani, Matteo
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2022, 13 (01) : 78 - 95
  • [3] Deep learning-assisted comparative analysis of animal trajectories with DeepHL
    Takuya Maekawa
    Kazuya Ohara
    Yizhe Zhang
    Matasaburo Fukutomi
    Sakiko Matsumoto
    Kentarou Matsumura
    Hisashi Shidara
    Shuhei J. Yamazaki
    Ryusuke Fujisawa
    Kaoru Ide
    Naohisa Nagaya
    Koji Yamazaki
    Shinsuke Koike
    Takahisa Miyatake
    Koutarou D. Kimura
    Hiroto Ogawa
    Susumu Takahashi
    Ken Yoda
    Nature Communications, 11
  • [4] Deep learning-assisted analysis of HRTEM images of crystalline nanoparticles
    Zhu, Xiaoyang
    Mao, Yu
    Liu, Jizi
    Chen, Yi
    Chen, Chuan
    Li, Yan
    Huang, Xiao
    Gu, Ning
    NANOSCALE, 2023, 15 (35) : 14496 - 14504
  • [5] Deep learning-assisted comparative analysis of animal trajectories with DeepHL
    Maekawa, Takuya
    Ohara, Kazuya
    Zhang, Yizhe
    Fukutomi, Matasaburo
    Matsumoto, Sakiko
    Matsumura, Kentarou
    Shidara, Hisashi
    Yamazaki, Shuhei J.
    Fujisawa, Ryusuke
    Ide, Kaoru
    Nagaya, Naohisa
    Yamazaki, Koji
    Koike, Shinsuke
    Miyatake, Takahisa
    Kimura, Koutarou D.
    Ogawa, Hiroto
    Takahashi, Susumu
    Yoda, Ken
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Deep learning-assisted light sheet holography
    Asoudegi, Nima
    Dorrah, Ahmed h.
    Mojahedi, Mo
    OPTICS EXPRESS, 2024, 32 (02) : 1161 - 1175
  • [7] Deep Learning-Assisted Video Compression Framework
    Man, Hengyu
    Yu, Chang
    Xing, Feng
    Cheng, Yang
    Zheng, Bo
    Fan, Xiaopeng
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3210 - 3214
  • [8] Deep learning-assisted fluorescence spectroscopy for food quality and safety analysis
    Yuan, Yuan
    Ji, Zengtao
    Fan, Yanwei
    Xu, Qian
    Shi, Ce
    Lyu, Jian
    Ertbjerg, Per
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2025, 156
  • [9] Deep learning-assisted analysis of single molecule dynamics from liquid-phase electron microscopy
    Cheng, Bin
    Ye, Enze
    Sun, He
    Wang, Huan
    CHEMICAL COMMUNICATIONS, 2023, 59 (12) : 1701 - 1704
  • [10] A generalized machine learning-assisted phase-equilibrium calculation model for shale reservoirs
    Chen, Fangxuan
    Luo, Sheng
    Wang, Shihao
    Nasrabadi, Hadi
    FLUID PHASE EQUILIBRIA, 2022, 558