Minimax estimation of distances on a surface and minimax manifold learning in the isometric-to-convex setting
被引:0
|
作者:
Arias-Castro, Ery
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Halicioglu Data Sci Inst, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USAUniv Calif San Diego, Halicioglu Data Sci Inst, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
Arias-Castro, Ery
[1
]
Chau, Phong Alain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USAUniv Calif San Diego, Halicioglu Data Sci Inst, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
Chau, Phong Alain
[2
]
机构:
[1] Univ Calif San Diego, Halicioglu Data Sci Inst, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
We start by considering the problem of estimating intrinsic distances on a smooth submanifold. We show that minimax optimality can be obtained via a reconstruction of the surface, and discuss the use of a particular mesh construction-the tangential Delaunay complex-for that purpose. We then turn to manifold learning and argue that a variant of Isomap where the distances are instead computed on a reconstructed surface is minimax optimal for the isometric variant of the problem.