Minimax estimation of distances on a surface and minimax manifold learning in the isometric-to-convex setting

被引:0
|
作者
Arias-Castro, Ery [1 ]
Chau, Phong Alain [2 ]
机构
[1] Univ Calif San Diego, Halicioglu Data Sci Inst, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
shortest paths; geodesic distances; meshes; tangential Delaunay complex; surfaces with positive reach; manifold learning; Isomap; minimax decision theory; NONLINEAR DIMENSIONALITY REDUCTION; HESSIAN EIGENMAPS; RECONSTRUCTION; CONVERGENCE; LAPLACIAN; ALGORITHM; RATES;
D O I
10.1093/imaiai/iaad046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We start by considering the problem of estimating intrinsic distances on a smooth submanifold. We show that minimax optimality can be obtained via a reconstruction of the surface, and discuss the use of a particular mesh construction-the tangential Delaunay complex-for that purpose. We then turn to manifold learning and argue that a variant of Isomap where the distances are instead computed on a reconstructed surface is minimax optimal for the isometric variant of the problem.
引用
收藏
页数:40
相关论文
共 4 条