Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function

被引:3
作者
Alahmade, Ayman [1 ]
Mujahid, Zeeshan [2 ]
Tawfiq, Ferdous M. O. [3 ]
Khan, Bilal [4 ]
Khan, Nazar [2 ]
Tchier, Fairouz [3 ]
机构
[1] Taibah Univ, Coll Sci & Art, Dept Math, AlUla Branch, Medina 42353, Saudi Arabia
[2] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22500, Pakistan
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 22452, Saudi Arabia
[4] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
关键词
analytic functions; cardioid domain starlike functions; Hankel determinant; subordination; m-fold symmetric functions; STARLIKE FUNCTIONS; CONVOLUTION PROPERTIES; INEQUALITIES; BOUNDS; 2ND;
D O I
10.3390/sym15112039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this research, we define a few subclasses of analytic functions which are connected to sine functions and the cardioid domain in the unit disk. We investigate initial coefficient bounds, the Fekete-Szego problem and second and third Hankel determinants for the functions f belonging to these newly defined classes. We also define the class of m-fold symmetric functions related with the sine function and then investigate the bounds of the third Hankel determinant for twofold symmetric and threefold symmetric functions.
引用
收藏
页数:15
相关论文
共 41 条
  • [1] Hankel determinant of order three for familiar subsets of analytic functions related with sine function
    Arif, Muhammad
    Raza, Mohsan
    Tang, Huo
    Hussain, Shehzad
    Khan, Hassan
    [J]. OPEN MATHEMATICS, 2019, 17 : 1615 - 1630
  • [2] Babalola KO, 2010, INEQUAL THEORY APPL, P1
  • [3] Bieberbach L, 1916, SITZBER K PREUSS AKA, P940
  • [4] CHICHRA PN, 1977, P AM MATH SOC, V62, P37
  • [5] The Bounds of Some Determinants for Starlike Functions of Order Alpha
    Cho, N. E.
    Kowalczyk, B.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 523 - 535
  • [6] SOME COEFFICIENT INEQUALITIES RELATED TO THE HANKEL DETERMINANT FOR STRONGLY STARLIKE FUNCTIONS OF ORDER ALPHA
    Cho, N. E.
    Kowalczyk, B.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 429 - 439
  • [7] A PROOF OF THE BIEBERBACH CONJECTURE
    DEBRANGES, L
    [J]. ACTA MATHEMATICA, 1985, 154 (1-2) : 137 - 152
  • [8] The Hankel determinant of exponential polynomials
    Ehrenborg, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (06) : 557 - 560
  • [9] HAYMAN WK, 1968, P LOND MATH SOC, V18, P77
  • [10] Janowski W, 1970, Annales Polonici Mathematici, V23, P159, DOI DOI 10.4064/AP-23-2-159-177