Multiscale assessment of performance of limestone calcined clay cement (LC3) reinforced with virgin and recycled carbon fibers

被引:35
作者
Li, Huanyu [1 ,2 ]
Yang, Jian [1 ]
Wang, Lei [3 ]
Li, Lihui [1 ]
Xia, Yan [3 ]
Koberle, Thomas [2 ]
Dong, Wenkui [2 ]
Zhang, Ning [4 ]
Yang, Bin [5 ,6 ]
Mechtcherine, Viktor [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai Key Lab Digital Maintenance Bldg & Infras, Shanghai 200240, Peoples R China
[2] Tech Univ Dresden, Inst Construct Mat, D-01062 Dresden, Germany
[3] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[4] Leibniz Inst Ecol Urban & Reg Dev IOER, Weberplatz 1, D-01217 Dresden, Germany
[5] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[6] Nantong Fuyuan Carbon Fiber Recycling Co LTD FUY, Nantong, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon fiber; Recycled carbon fiber; Limestone calcined clay cement (LC 3 ); Fresh -state properties; Mechanical properties; Fiber -matrix bond; Autogenous shrinkage; AUTOGENOUS DEFORMATIONS; ENHANCED INTERACTION; EARLY-AGE; HYDRATION; BEHAVIOR; PASTES; WASTE; TEMPERATURE; PYROLYSIS; STRENGTH;
D O I
10.1016/j.conbuildmat.2023.133228
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The carbon fibers (CFs) recovered from end-of-life CFRP scraps via pyrolysis have recently aroused ascending interest due to their highly retained fiber strength and lowered carbon footprint. However, the utilization of recycled CFs (rCFs) within cementitious matrices, as well as the exploration of their interfacial interactions, remains notably limited. In this study, we have first time incorporated rCFs into sustainable Limestone Calcined Clay Cement (LC3) composite and comprehensively investigated the microstructural changes and physical characteristics of LC3-blended mixtures. The incorporation of LC3 results in a reduction in setting times and the flowability of fresh mortar, accompanied by a decrease in cumulative heat release. Analytical analysis indicated the generation of a substantial quantity of ettringite crystallites and highly polymerized C-A-S-H gel in LC3 mixtures, which benefited the enhancement of flexural strengths but increased the micropores in the matrices. Compromised compressive strengths, with reductions ranging from 5% to 46%, were observed upon the incorporation of LC3, aligning closely with the porosity findings. Measurements of autogenous shrinkage revealed an expansion tendency as LC3 proportions increased, likely attributed to bleeding and ettringite formation. A thorough investigation into the properties of CFs after undergoing thermal recycling was undertaken. A quantitative assessment of the bonding at the fiber-cement interface revealed a progressive reduction in bond strength for both virgin and recycled CFs, diminishing from 5.1 MPa and 2.5 MPa to 0.4 MPa and 0.5 MPa, respectively, along with the addition of LC3 content. Our findings have provided a comprehensive understanding of the hydration and microstructure evolution within LC3 blends, as well as the influence of CF additions on the matrices' properties.
引用
收藏
页数:22
相关论文
共 102 条
  • [1] Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature
    Adesina, Adeyemi
    [J]. RESOURCES ENVIRONMENT AND SUSTAINABILITY, 2021, 3
  • [2] Microstructural changes and mechanical performance of cement composites reinforced with recycled carbon fibers
    Akbar, Arslan
    Kodur, V. K. R.
    Liew, K. M.
    [J]. CEMENT & CONCRETE COMPOSITES, 2021, 121
  • [3] Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fibers
    Akbar, Arslan
    Liew, K. M.
    [J]. COMPOSITES PART B-ENGINEERING, 2020, 198
  • [4] Anderson DP, 1991, CARBON FIBER MORPHOL
  • [5] [Anonymous], 2005, BS EN 4551
  • [6] Cement substitution by a combination of metakaolin and limestone
    Antoni, M.
    Rossen, J.
    Martirena, F.
    Scrivener, K.
    [J]. CEMENT AND CONCRETE RESEARCH, 2012, 42 (12) : 1579 - 1589
  • [7] ASTM, 2009, C1698-09 Standard test method for autogenous strain of cement paste and mortar
  • [8] ASTM, 2013, C807, Standard Test Method for Time of Setting of Hydraulic Vement Mortar by Modified Vicat Needle
  • [9] Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3)
    Avet, Francois
    Boehm-Courjault, Emmanuelle
    Scrivener, Karen
    [J]. CEMENT AND CONCRETE RESEARCH, 2019, 115 : 70 - 79
  • [10] Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3)
    Avet, Francois
    Scrivener, Karen
    [J]. CEMENT AND CONCRETE RESEARCH, 2018, 107 : 124 - 135