An Fe3O4 based hole transport bilayer for efficient and stable perovskite solar cells

被引:4
作者
Qureshi, Akbar Ali [1 ,2 ,3 ]
Schuetz, Emilia R. [3 ]
Javed, Sofia [1 ]
Schmidt-Mende, Lukas [3 ]
Fakharuddin, Azhar [3 ]
机构
[1] Natl Univ Sci & Technol, Sch Chem & Mat Engn, Islamabad 44000, Pakistan
[2] Bahauddin Zakariya Univ, Dept Mech Engn, Multan 60000, Pakistan
[3] Univ Konstanz, Dept Phys, D-78464 Constance, Germany
来源
ENERGY ADVANCES | 2023年 / 2卷 / 11期
关键词
SPIRO-OMETAD; LAYER; PERFORMANCE; FILM; STRATEGIES; PROGRESS; OXIDE;
D O I
10.1039/d3ya00014a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hole transport layer (HTL) critically affects the photovoltaic performance and stability of metal halide perovskite solar cells (PSCs). So far, spiro-OMeTAD remains the most successful HTL; however, concerns remain regarding the stability of the PSCs using a spiro-OMeTAD based HTL. Herein, we report an inorganic-organic Fe3O4/spiro-OMeTAD bilayer HTL that not only shows a superior device performance than a pristine spiro-OMeTAD counterpart but also an enhanced shelf-life stability. The experimental results show that the inclusion of an Fe3O4 layer between the perovskite and the spiro-OMeTAD reduces the surface roughness, which in turn leads to the formation of a smooth and pin-hole free HTL. The bilayer HTL design improves charge extraction and also reduces the interfacial trap density, as demonstrated by steady-state and time-resolved photoluminescence and space charge limited current measurements, respectively. The Fe3O4/spiro-OMeTAD bi-layer HTL demonstrated significant enhancement in photovoltaic performance, such as 11% higher power conversion efficiency (PCE) than the reference device, and also exhibited long-term shelf-life stability by retaining 89% of its initial PCE after around 1300 hours. Our study proposes a simplistic strategy for the fabrication of efficient and stable PSCs by employing the inorganic-organic stack architecture of HTLs.
引用
收藏
页码:1905 / 1914
页数:10
相关论文
共 49 条
  • [1] Intrinsic thermal decomposition pathways of lead halide perovskites APbX3
    Akbulatov, Azat F.
    Martynenko, Vyacheslav M.
    Frolova, Lyubov A.
    Dremova, Nadezhda N.
    Zhidkov, Ivan
    Tsarev, Sergey A.
    Luchkin, Sergey Yu
    Kurmaev, Ernst Z.
    Aldoshin, Sergey M.
    Stevenson, Keith J.
    Troshin, Pavel A.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 213
  • [2] Effect of hot-casted NiO hole transport layer on the performance of perovskite solar cells
    Al Mamun, Abdullah
    Ava, Tanzila Tasnim
    Abdel-Fattah, Tarek M.
    Jeong, Hyeon Jun
    Jeong, Mun Seok
    Han, Seonhye
    Yoon, Hargsoon
    Namkoong, Gon
    [J]. SOLAR ENERGY, 2019, 188 : 609 - 618
  • [3] Magnetite as Inorganic Hole Transport Material for Lead Halide Perovskite-Based Solar Cells with Enhanced Stability
    Ansari, Fatemeh
    Salavati-Niasari, Masoud
    Amiri, Omid
    Mir, Noshin
    Nejand, Bahram Abdollahi
    Ahmadi, Vahid
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (02) : 743 - 750
  • [4] Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions
    Azmi, Randi
    Ugur, Esma
    Seitkhan, Akmaral
    Aljamaan, Faisal
    Subbiah, Anand S.
    Liu, Jiang
    Harrison, George T.
    Nugraha, Mohamad, I
    Eswaran, Mathan K.
    Babics, Maxime
    Chen, Yuan
    Xu, Fuzong
    Allen, Thomas G.
    Rehman, Atteq Ur
    Wang, Chien-Lung
    Anthopoulos, Thomas D.
    Schwingenschlogl, Udo
    De Bastiani, Michele
    Aydin, Erkan
    De Wolf, Stefaan
    [J]. SCIENCE, 2022, 376 (6588) : 73 - +
  • [5] Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation
    Bag, Atanu
    Radhakrishnan, R.
    Nekovei, Reza
    Jeyakumar, R.
    [J]. SOLAR ENERGY, 2020, 196 : 177 - 182
  • [6] Interfacial Modification in Organic and Perovskite Solar Cells
    Bi, Shiqing
    Leng, Xuanye
    Li, Yanxun
    Zheng, Zhong
    Zhang, Xuning
    Zhang, Yuan
    Zhou, Huiqiong
    [J]. ADVANCED MATERIALS, 2019, 31 (45)
  • [7] The Causes of Degradation of Perovskite Solar Cells
    Bisquert, Juan
    Juarez-Perez, Emilio J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (19) : 5889 - 5891
  • [8] Hole-Transport Materials for Perovskite Solar Cells
    Calio, Laura
    Kazim, Samrana
    Graetzel, Michael
    Ahmad, Shahzada
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (47) : 14522 - 14545
  • [9] Excellent Intrinsic Long-Term Thermal Stability of Co-Evaporated MAPbI3 Solar Cells at 85 °C
    Dewi, Herlina Arianita
    Li, Jia
    Wang, Hao
    Chaudhary, Bhumika
    Mathews, Nripan
    Mhaisalkar, Subodh
    Bruno, Annalisa
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (22)
  • [10] Spin-coated copper(I) thiocyanate as a hole transport layer for perovskite solar cells
    Er, Utku
    Icli, Kerem Cagatay
    Ozenbas, Macit
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2020, 24 (02) : 293 - 304