EVALUATING YOLO MODELS FOR GRAPE MOTH DETECTION IN INSECT TRAPS

被引:0
作者
Teixeira, Ana Claudia [1 ,2 ]
Carneiro, Gabriel [1 ,2 ]
Morais, Raul [1 ,3 ]
Sousa, Joaquim J. [1 ,2 ]
Cunha, Antonio [1 ,2 ]
机构
[1] Univ Tras Os Montes & Alto Douro, P-5000801 Vila Real, Portugal
[2] Inst Syst & Comp Engn Technol & Sci INESC TEC, P-4200465 Porto, Portugal
[3] Univ Tras os Montes e Alto Douro, Ctr Res & Technol Agro Environm & Biol Sci, P-5000801 Vila Real, Portugal
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
欧盟地平线“2020”;
关键词
Insect detection; smart pest monitoring; deep learning; YOLO models;
D O I
10.1109/IGARSS52108.2023.10282249
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The grape moth is a common pest that affects grapevines by consuming both fruit and foliage, rendering grapes deformed and unsellable. Integrated pest management for the grape moth heavily relies on pheromone traps, which serve a crucial function by identifying and tracking adult moth populations. This information is then used to determine the most appropriate time and method for implementing other control techniques. This study aims to find the best method for detecting small insects. We evaluate the following recent YOLO models: v5, v6, v7, and v8 for detecting and counting grape moths in insect traps. The best performance was achieved by YOLOv8, with an average precision of 92.4% and a counting error of 8.1%.
引用
收藏
页码:3526 / 3529
页数:4
相关论文
共 15 条
[1]  
Altimira F., 2022, INTEGRATED PEST MANA, DOI [10.5772/intechopen.99153, DOI 10.5772/INTECHOPEN.99153]
[2]   An AIoT Based Smart Agricultural System for Pests Detection [J].
Chen, Ching-Ju ;
Huang, Ya-Yu ;
Li, Yuan-Shuo ;
Chang, Chuan-Yu ;
Huang, Yueh-Min .
IEEE ACCESS, 2020, 8 :180750-180761
[3]   Robust one-stage object detection with location-aware classifiers [J].
Chen, Qiang ;
Wang, Peisong ;
Cheng, Anda ;
Wang, Wanguo ;
Zhang, Yifan ;
Cheng, Jian .
PATTERN RECOGNITION, 2020, 105
[4]   The Impact of Microbial and Botanical Insecticides on Grape Berry Moths and Their Effects on Secondary Pests and Beneficials [J].
Duso, Carlo ;
Pozzebon, Alberto ;
Lorenzon, Mauro ;
Fornasiero, Diego ;
Tirello, Paola ;
Simoni, Sauro ;
Bagnoli, Bruno .
AGRONOMY-BASEL, 2022, 12 (01)
[5]  
Jocher G., 2023, YOLO by Ultralytics (Version 8.0.0) Computer software
[6]  
Li C., 2022, Yolov6: A single-stage object detection framework for industrial applications
[7]   You Only Look Once: Unified, Real-Time Object Detection [J].
Redmon, Joseph ;
Divvala, Santosh ;
Girshick, Ross ;
Farhadi, Ali .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :779-788
[8]  
Teixeira Ana Claudia, 2023, Procedia Computer Science, P145, DOI 10.1016/j.procs.2023.01.275
[9]  
Teixeira Ana Claudia, 2023, Procedia Computer Science, P153, DOI 10.1016/j.procs.2023.01.276
[10]   A Systematic Review on Automatic Insect Detection Using Deep Learning [J].
Teixeira, Ana Claudia ;
Ribeiro, Jose ;
Morais, Raul ;
Sousa, Joaquim J. ;
Cunha, Antonio .
AGRICULTURE-BASEL, 2023, 13 (03)