Predicting Tumor Spread Through Air Space in the Pulmonary Adenocarcinoma Slides Using Deep Learning Model

被引:0
作者
Lee, S. [1 ]
Han, Y. B. [1 ]
Kim, C. Y. [2 ]
Lee, J. [3 ]
Kwon, H. J. [1 ]
Kim, H. [1 ]
Chung, J. -H. [3 ]
机构
[1] Seoul Natl Univ, Bundang Hosp, Seongnam, South Korea
[2] Seoul Natl Univ Hosp, Seoul, South Korea
[3] Seoul Natl Univ, Coll Med, Seoul, South Korea
关键词
STAS; adenocarcinoma; deep learning;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
MA20.04
引用
收藏
页码:S174 / S174
页数:1
相关论文
共 50 条
  • [31] A Deep Learning Model for Predicting Tumor Suppressor Genes and Oncogenes from PDB Structure
    Tavanaei, Amirhossein
    Anandanadarajah, Nishanth
    Maida, Anthony
    Loganantharaj, Rasiah
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 613 - 617
  • [32] A CT-based deep learning model for subsolid pulmonary nodules to distinguish minimally invasive adenocarcinoma and invasive adenocarcinoma
    Chen, Xiangmeng
    Feng, Bao
    Chen, Yehang
    Duan, Xiaobei
    Liu, Kunfeng
    Li, Kunwei
    Zhang, Chaotong
    Liu, Xueguo
    Long, Wansheng
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 145
  • [33] Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning
    Shen, Tianle
    Hou, Runping
    Ye, Xiaodan
    Li, Xiaoyang
    Xiong, Junfeng
    Zhang, Qin
    Zhang, Chenchen
    Cai, Xuwei
    Yu, Wen
    Zhao, Jun
    Fu, Xiaolong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [34] CT-based radiomics model to predict spread through air space in resectable lung cancer
    Gong, Jialin
    Yin, Rui
    Sun, Leina
    Gao, Na
    Wang, Xiaofei
    Zhang, Lianmin
    Zhang, Zhenfa
    CANCER MEDICINE, 2023, 12 (18): : 18755 - 18766
  • [35] Correlation Between Radiologic Feature and Spread Through Air Space in Lung Solid Adenocarcinoma 30.0 mm or Less in Maximum Diameter
    Li, P.
    Sun, Q.
    Yip, R.
    Holton, T.
    Yankelevitz, D.
    Henschke, C.
    JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (10) : S488 - S488
  • [36] Predictive value of CT and 18F-FDG PET/CT features on spread through air space in lung adenocarcinoma
    Li, Haijun
    Li, Lifeng
    Liu, Yumeng
    Deng, Yingke
    Zhu, Yu
    Huang, Ling
    Long, Ting
    Zeng, Li
    Shu, Yongqiang
    Peng, Dechang
    BMC CANCER, 2024, 24 (01)
  • [37] A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma
    Xie, Hui
    Song, Chaoling
    Jian, Lei
    Guo, Yeang
    Li, Mei
    Luo, Jiang
    Li, Qing
    Tan, Tao
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [38] Classification of Pulmonary Diseases Using a Deep Learning Stacking Ensemble Model
    Sadoon, Ruaa N.
    Chaid, Adala M.
    Informatica (Slovenia), 2024, 48 (14): : 43 - 64
  • [39] Pulmonary loose tumor tissue fragments and spread through air spaces (STAS): Invasive pattern or artifact? A critical review
    Blaauwgeers, Hans
    Russell, Prudence A.
    Jones, Kirk D.
    Radonic, Teodora
    Thunnissen, Erik
    LUNG CANCER, 2018, 123 : 107 - 111
  • [40] Solid Nodule Appearance as a Predictor of Tumor Spread Through Air Spaces in Patients with Lung Adenocarcinoma: A Propensity Score Matching Study
    Zeng, Qingpeng
    Wang, Bingzhi
    Li, Jiagen
    Zhao, Jun
    Mao, Yousheng
    Gao, Yushun
    Xue, Qi
    Gao, Shugeng
    Sun, Nan
    He, Jie
    CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 8197 - 8207