A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:3
|
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [41] Recognition and Detection of Persimmon in a Natural Environment Based on an Improved YOLOv5 Model
    Cao, Ziang
    Mei, Fangfang
    Zhang, Dashan
    Liu, Bingyou
    Wang, Yuwei
    Hou, Wenhui
    ELECTRONICS, 2023, 12 (04)
  • [42] Physiological state recognition model of small silkworm based on improved YOLOv5
    Liu, Pu
    He, Xingrui
    Zhao, Kai
    Li, Wei
    Huang, Bo
    SCIENCE PROGRESS, 2024, 107 (04)
  • [43] High-Precision Traffic Sign Detection and Recognition Using an Enhanced YOLOv5
    Luo, Jiaomin
    Li, Ying
    Wei, Li
    Nie, Gang
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024,
  • [44] BI-TST_YOLOv5: Ground Defect Recognition Algorithm Based on Improved YOLOv5 Model
    Qin, Jiahao
    Yang, Xiaofeng
    Zhang, Tianyi
    Bi, Shuilan
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (03):
  • [45] Lightweight network for insulator fault detection based on improved YOLOv5
    Weng, Dehua
    Zhu, Zhiliang
    Yan, Zhengbing
    Wu, Moran
    Jiang, Ziang
    Ye, Nan
    CONNECTION SCIENCE, 2024, 36 (01)
  • [46] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [47] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [48] Citrus Detection Method Based on Improved YOLOv5 Lightweight Network
    Gao, Xinyang
    Wei, Sheng
    Wen, Zhiqing
    Yu, Tianbiao
    Computer Engineering and Applications, 2023, 59 (11) : 212 - 221
  • [49] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [50] A lightweight tea bud detection model based on Yolov5
    Gui, Zhiyong
    Chen, Jianneng
    Li, Yang
    Chen, Zhiwei
    Wu, Chuanyu
    Dong, Chunwang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205