A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:3
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [41] A Lightweight Traffic Sign Detection Method With Improved YOLOv7-Tiny
    Cao, Xiaobing
    Xu, Yicen
    He, Jiawei
    Liu, Jiahui
    Wang, Yongjie
    IEEE ACCESS, 2024, 12 : 105131 - 105147
  • [42] ADVERSARIAL ATTACK ON YOLOV5 FOR TRAFFIC AND ROAD SIGN DETECTION
    Jain, Sanyam
    2024 4TH INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI, 2024, : 73 - 77
  • [43] Efficient Vision Transformer YOLOv5 for Accurate and Fast Traffic Sign Detection
    Zeng, Guang
    Wu, Zhizhou
    Xu, Lipeng
    Liang, Yunyi
    ELECTRONICS, 2024, 13 (05)
  • [44] Lightweight fungal spore detection based on improved YOLOv5 in natural scenes
    Li, Kaiyu
    Qiao, Chen
    Zhu, Xinyi
    Song, Yuzhaobi
    Zhang, Lingxian
    Gao, Wei
    Wang, Yong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (06) : 2247 - 2261
  • [45] Real-time Arabic Sign Language Recognition based on YOLOv5
    Aiouez, Sabrina
    Hamitouche, Anis
    Belmadoui, Mohamed Sabri
    Belattar, Khadidja
    Souami, Feryel
    IMPROVE: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND VISION ENGINEERING, 2022, : 17 - 25
  • [46] A method of identification and localization of tea buds based on lightweight improved YOLOV5
    Wang, Yuanhong
    Lu, Jinzhu
    Wang, Qi
    Gao, Zongmei
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [47] Improved Traffic Sign Detection Model Based on YOLOv7-Tiny
    She, Feifan
    Hong, Zhiyong
    Zeng, Zhiqiang
    Yu, Wenhua
    IEEE ACCESS, 2023, 11 : 126555 - 126567
  • [48] Lightweight target detection for the field flat jujube based on improved YOLOv5
    Li, Shilin
    Zhang, Shujuan
    Xue, Jianxin
    Sun, Haixia
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
  • [49] A Lightweight Traffic Sign Detection Algorithm Based on YOLOv5s
    Sun, Jiahao
    Liu, Zhengda
    Liang, Jifeng
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 358 - 362
  • [50] Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model
    Wang, Haiqing
    Shang, Shuqi
    Wang, Dongwei
    He, Xiaoning
    Feng, Kai
    Zhu, Hao
    AGRICULTURE-BASEL, 2022, 12 (07):