A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:3
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [31] Lightweight network for insulator fault detection based on improved YOLOv5
    Weng, Dehua
    Zhu, Zhiliang
    Yan, Zhengbing
    Wu, Moran
    Jiang, Ziang
    Ye, Nan
    CONNECTION SCIENCE, 2024, 36 (01)
  • [32] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [33] A Lightweight Method for Detecting Sewer Defects Based on Improved YOLOv5
    Zhang, Xing
    Zhang, Jiawei
    Tian, Lei
    Liu, Xiang
    Wang, Shuohong
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [34] Traffic Sign Recognition Using Improved YOLOv7 Model
    Tang, Chen
    Yin, Lijie
    PROCEEDINGS OF 2023 INTERNATIONAL CONFERENCE ON AI AND METAVERSE IN SUPPLY CHAIN MANAGEMENT, AIMSCM 2023, 2023,
  • [35] A Lightweight Detection Method for Blueberry Fruit Maturity Based on an Improved YOLOv5 Algorithm
    Xiao, Feng
    Wang, Haibin
    Xu, Yueqin
    Shi, Zhen
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [36] An improved lightweight object detection algorithm for YOLOv5
    Luo, Hao
    Wei, Jiangshu
    Wang, Yuchao
    Chen, Jinrong
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [37] YOLOv5-R: lightweight real-time detection based on improved YOLOv5
    Ren, Jian
    Wang, Zhijie
    Zhang, Yifan
    Liao, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [38] A Smoke Detection Model Based on Improved YOLOv5
    Wang, Zhong
    Wu, Lei
    Li, Tong
    Shi, Peibei
    MATHEMATICS, 2022, 10 (07)
  • [39] Improved small target detection algorithm based on multiattention and YOLOv5s for traffic sign recognition
    Ma, Ge
    Li, Hongwei
    Yan, Ziwei
    Liu, Zhijie
    Zhao, Zhijia
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (09): : 1647 - 1658
  • [40] Road traffic target detection method based on improved YOLOv5
    Zhou, Huichun
    Xue, Yuming
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1124 - 1128