A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:3
|
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [21] Research and Implementation of an Embedded Traffic Sign Detection Model Using Improved YOLOV5
    Hu, Tong
    Gong, Zhengwei
    Song, Jun
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (04) : 881 - 892
  • [22] Improved lightweight YOLOv5 based on ShuffleNet and its application on traffic signs detection
    Liu, Liwei
    Wang, Lei
    Ma, Zhuang
    PLOS ONE, 2024, 19 (09):
  • [23] Research on Lightweight of Improved YOLOv5 Infrared Traffic Detection Network
    Deng, Kaiwen
    Ge, Chenyang
    Computer Engineering and Applications, 2023, 59 (12) : 184 - 192
  • [24] Lightweight Sea Cucumber Recognition Network Using Improved YOLOv5
    Xiao, Qian
    Li, Qian
    Zhao, Lide
    IEEE ACCESS, 2023, 11 : 44787 - 44797
  • [25] Tomato Maturity Recognition Model Based on Improved YOLOv5 in Greenhouse
    Li, Renzhi
    Ji, Zijing
    Hu, Shikang
    Huang, Xiaodong
    Yang, Jiali
    Li, Wenfeng
    AGRONOMY-BASEL, 2023, 13 (02):
  • [26] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [27] Improved lightweight road damage detection based on YOLOv5
    Liu, Chang
    Sun, Yu
    Chen, Jin
    Yang, Jing
    Wang, Fengchao
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 314 - 320
  • [28] Lightweight Tunnel Obstacle Detection Based on Improved YOLOv5
    Li, Yingjie
    Ma, Chuanyi
    Li, Liping
    Wang, Rui
    Liu, Zhihui
    Sun, Zizheng
    SENSORS, 2024, 24 (02)
  • [29] NTS-YOLO: A Nocturnal Traffic Sign Detection Method Based on Improved YOLOv5
    He, Yong
    Guo, Mengqi
    Zhang, Yongchuan
    Xia, Jun
    Geng, Xuelai
    Zou, Tao
    Ding, Rui
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [30] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816