A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:3
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [1] A Novel Lightweight Traffic Sign Recognition Model Based on YOLOv5
    Li, Wenju
    Zhang, Gan
    Cui, Liu
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (05)
  • [2] An Improved Traffic Sign Detection and Recognition Deep Model Based on YOLOv5
    Wang, Qianying
    Li, Xiangyu
    Lu, Ming
    IEEE ACCESS, 2023, 11 : 54679 - 54691
  • [3] Traffic Sign Recognition Algorithm Based on Improved YOLOv5
    Sang, Zhengxiao
    Xia, Fuming
    Huang, Han
    Shi, Zhen
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 468 - 472
  • [4] A road traffic sign recognition method based on improved YOLOv5
    Shi, Lu
    Zhang, Haifei
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2025, 47 (01)
  • [5] Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s
    Liu, Fei
    Zhong, Yanfen
    Qiu, Jiawei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [6] Lightweight traffic sign detection algorithm based on improved YOLOv5 in snowy environments
    Wang, Zhanyu
    Qu, Mengmeng
    Wang, Ning
    Liu, Lintao
    Su, Hongyang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [7] Traffic Sign Detection Based on the Improved YOLOv5
    Zhang, Rongyun
    Zheng, Kunming
    Shi, Peicheng
    Mei, Ye
    Li, Haoran
    Qiu, Tian
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [8] Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
    Sun, Yu
    Zhang, Dongwei
    Guo, Xindong
    Yang, Hua
    PLANTS-BASEL, 2023, 12 (17):
  • [9] A Vehicle Recognition Model Based on Improved YOLOv5
    Shao, Lei
    Wu, Han
    Li, Chao
    Li, Ji
    ELECTRONICS, 2023, 12 (06)
  • [10] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38