A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:3
|
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [1] A Novel Lightweight Traffic Sign Recognition Model Based on YOLOv5
    Li, Wenju
    Zhang, Gan
    Cui, Liu
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (05)
  • [2] Traffic Sign Recognition Algorithm Based on Improved YOLOv5
    Sang, Zhengxiao
    Xia, Fuming
    Huang, Han
    Shi, Zhen
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 468 - 472
  • [3] An Improved Traffic Sign Detection and Recognition Deep Model Based on YOLOv5
    Wang, Qianying
    Li, Xiangyu
    Lu, Ming
    IEEE ACCESS, 2023, 11 : 54679 - 54691
  • [4] Traffic Sign Detection Based on Improved YOLOv5 Model
    Zhao, Yibing
    Wang, Yannan
    Xing, Shuyong
    Guo, Lie
    SMART TRANSPORTATION AND GREEN MOBILITY SAFETY, GITSS 2022, 2024, 1201 : 293 - 307
  • [5] A road traffic sign recognition method based on improved YOLOv5
    Shi, Lu
    Zhang, Haifei
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2025, 47 (01)
  • [6] Traffic Sign Detection Based on Improved YOLOv5
    Zhou, Hua-Ping
    Xu, Chen-Chen
    Sun, Ke-Lei
    Journal of Computers (Taiwan), 2023, 34 (03) : 63 - 73
  • [7] Lightweight traffic sign detection algorithm based on improved YOLOv5 in snowy environments
    Wang, Zhanyu
    Qu, Mengmeng
    Wang, Ning
    Liu, Lintao
    Su, Hongyang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [8] Traffic Sign Detection Based on the Improved YOLOv5
    Zhang, Rongyun
    Zheng, Kunming
    Shi, Peicheng
    Mei, Ye
    Li, Haoran
    Qiu, Tian
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [9] Efficient traffic sign recognition with YOLOv5
    Nacir, Omran
    Amna, Maraoui
    Imen, Werda
    Hamdi, Belgacem
    International Journal of Powertrains, 2024, 13 (03) : 269 - 286
  • [10] Improved Traffic Sign Detection Method for YOLOv5
    Wei, Qiang
    Hu, Xiaoyang
    Zhao, Hongxin
    Computer Engineering and Applications, 2023, 59 (13) : 229 - 237