Fractional Polynomial Models as Special Cases of Bayesian Generalized Nonlinear Models

被引:1
作者
Hubin, Aliaksandr [1 ,2 ,3 ]
Heinze, Georg [4 ]
De Bin, Riccardo [2 ]
机构
[1] Norwegian Univ Life Sci, Bioinformat & Appl Stat, N-1433 As, Norway
[2] Univ Oslo, Dept Math, N-0313 Oslo, Norway
[3] Ostfold Univ Coll, Res Adm, N-1757 Halden, Norway
[4] Med Univ Vienna, Inst Clin Biometr, Ctr Med Data Sci, A-1090 Vienna, Austria
关键词
Bayesian model selection; MCMC; nonlinear effects; VARIABLE SELECTION; G-PRIORS; REGRESSION; TRANSFORMATION; INFERENCE; MIXTURES;
D O I
10.3390/fractalfract7090641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a framework for fitting multivariable fractional polynomial models as specialcases of Bayesian generalized nonlinear models, applying an adapted version of the geneticallymodified mode jumping Markov chain Monte Carlo algorithm. The universality of the Bayesiangeneralized nonlinear models allows us to employ a Bayesian version of fractional polynomials inany supervised learning task, including regression, classification, and time-to-event data analysis.We show through a simulation study that our novel approach performs similarly to the classicalfrequentist multivariable fractional polynomials approach in terms of variable selection, identificationof the true functional forms, and prediction ability, while naturally providing, in contrast to itsfrequentist version, a coherent inference framework. Real-data examples provide further evidence infavor of our approach and show its flexibility.
引用
收藏
页数:23
相关论文
共 32 条
  • [1] Optimal predictive model selection
    Barbieri, MM
    Berger, JO
    [J]. ANNALS OF STATISTICS, 2004, 32 (03) : 870 - 897
  • [2] CRITERIA FOR BAYESIAN MODEL CHOICE WITH APPLICATION TO VARIABLE SELECTION
    Bayarri, M. J.
    Berger, J. O.
    Forte, A.
    Garcia-Donato, G.
    [J]. ANNALS OF STATISTICS, 2012, 40 (03) : 1550 - 1577
  • [3] Bayesian fractional polynomials
    Bove, Daniel Sabanes
    Held, Leonhard
    [J]. STATISTICS AND COMPUTING, 2011, 21 (03) : 309 - 324
  • [4] TRANSFORMATION OF INDEPENDENT VARIABLES
    BOX, GEP
    TIDWELL, PW
    [J]. TECHNOMETRICS, 1962, 4 (04) : 531 - &
  • [5] Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies
    Carbonetto, Peter
    Stephens, Matthew
    [J]. BAYESIAN ANALYSIS, 2012, 7 (01): : 73 - 107
  • [6] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [7] Claeskens G, 2008, MODEL SELECTION MODE
  • [8] Gelman A., 2013, BAYESIAN DATA ANAL
  • [9] Gerds T.A., 2022, Pec: Prediction Error Curves for Risk Prediction Models in Survival Analysis
  • [10] Hastie T, 2009, ELEMENTS STAT LEARNI