Comparison of Different Current Collector Materials for In Situ Lithium Deposition with Slurry-Based Solid Electrolyte Layers

被引:2
作者
Kreher, Tina [1 ]
Heim, Fabian [1 ]
Pross-Brakhage, Julia [1 ]
Hemmerling, Jessica [1 ]
Birke, Kai Peter [1 ]
机构
[1] Univ Stuttgart, Inst Photovolta, Elect Energy Storage Syst, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
来源
BATTERIES-BASEL | 2023年 / 9卷 / 08期
关键词
Li metal anode; anode free; sulfide electrolyte; half-cell setup; ELECTROCHEMICAL PERFORMANCES; STATE BATTERIES; SULFIDE; CHALLENGES; FABRICATION; CATHODE; ANODE;
D O I
10.3390/batteries9080412
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper, we investigate different current collector materials for in situ deposition of lithium using a slurry-based beta-Li3PS4 electrolyte layer with a focus on transferability to industrial production. Therefore, half-cells with different current collector materials (carbon-coated aluminum, stainless steel, aluminum, nickel) are prepared and plating/stripping tests are performed. The results are compared in terms of Coulombic efficiency (CE) and overvoltages. The stainless steel current collector shows the best performance, with a mean efficiency of eta(mean),SST = 98%; the carbon-coated aluminum reaches eta mean,Al+C = 97%. The results for pure aluminum and nickel indicate strong side reactions. In addition, an approach is tested in which a solvate ionic liquid (SIL) is added to the solid electrolyte layer. Compared to the cell setup without SIL, this cannot further increase the CE; however, a significant reduction in overvoltages is achieved.
引用
收藏
页数:17
相关论文
共 55 条
  • [1] Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte
    Ates, Tugce
    Keller, Marlou
    Kulisch, Joern
    Adermann, Torben
    Passerini, Stefano
    [J]. ENERGY STORAGE MATERIALS, 2019, 17 : 204 - 210
  • [2] Electrochemical investigations of lithium-aluminum alloy anode in Li/polymer cells
    Bang, HJ
    Kim, S
    Prakash, J
    [J]. JOURNAL OF POWER SOURCES, 2001, 92 (1-2) : 45 - 49
  • [3] Byeon Y.-W., 2021, ELECTROCHEM, V2, P452, DOI DOI 10.3390/ELECTROCHEM2030030
  • [4] Advanced Current Collectors for Alkali Metal Anodes
    Chen, Jianyu
    Xu, Xin
    He, Qian
    Ma, Yanwen
    [J]. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (03) : 386 - 401
  • [5] Aluminum-lithium alloy as a stable and reversible anode for lithium batteries
    Chen, Shang
    Yang, Xinyue
    Zhang, Jie
    Ma, Junpeng
    Meng, Yongqiang
    Tao, Kangjia
    Li, Feng
    Geng, Jianxin
    [J]. ELECTROCHIMICA ACTA, 2021, 368
  • [6] A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
    Chen, Yuqing
    Kang, Yuqiong
    Zhao, Yun
    Wang, Li
    Liu, Jilei
    Li, Yanxi
    Liang, Zheng
    He, Xiangming
    Li, Xing
    Tavajohi, Naser
    Li, Baohua
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 59 : 83 - 99
  • [7] Simulation study on internal short circuit of lithium ion battery caused by lithium dendrite
    Deng, Jianhui
    Yang, Xiaoqing
    Zhang, Guoqing
    [J]. MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [8] High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries
    Doerrer, Christopher
    Capone, Isaac
    Narayanan, Sudarshan
    Liu, Junliang
    Grovenor, Chris R. M.
    Pasta, Mauro
    Grant, Patrick S.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) : 37809 - 37815
  • [9] Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
    Fan, Xiulin
    Ji, Xiao
    Han, Fudong
    Yue, Jie
    Chen, Ji
    Chen, Long
    Deng, Tao
    Jiang, Jianjun
    Wang, Chunsheng
    [J]. SCIENCE ADVANCES, 2018, 4 (12):
  • [10] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603