Linkage Pathways of DNA-Nanoparticle Conjugates and Biological Applications

被引:2
作者
Huang, Shan [1 ]
Zhu, Jun-Jie [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA; inorganic nanoparticles; biosensing; biomedical; UP-CONVERSION NANOPARTICLES; GOLD NANOPARTICLES; COVALENT;
D O I
10.3390/chemosensors11080444
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
DNA-nanoparticle conjugates have extraordinary optical and catalytic properties that have attracted great interest in biosensing and biomedical applications. Combining these special qualities has made it possible to create extremely sensitive and selective biomolecule detection methods, as well as effective nanopharmaceutical carriers and therapy medications. In particular, inorganic nanoparticles, such as metal nanoparticles, metal-organic framework nanoparticles, or upconversion nanoparticles with relatively inert surfaces can easily bind to DNA through covalent bonds, ligand bonds, electrostatic adsorption, biotin-streptavidin interactions and click chemistry to form DNA-nanoparticle conjugates for a broad range of applications in biosensing and biomedicine due to their exceptional surface modifiability. In this review, we summarize the recent advances in the assembly mechanism of DNA-nanoparticle conjugates and their biological applications. The challenges of designing DNA-nanoparticle conjugates and their further applications are also discussed.
引用
收藏
页数:14
相关论文
共 79 条
[1]   Biosensing using DNA-based structures integrated with nanosheets [J].
Ahmadi-Sangachin, Elnaz ;
Bazzi, Fatima ;
Xu, Guobao ;
Hosseini, Morteza .
MICROCHEMICAL JOURNAL, 2023, 191
[2]   Building big with DNA bricks [J].
Ashworth, Claire .
NATURE REVIEWS MATERIALS, 2018, 3 (01)
[3]   Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges [J].
Baig, Nadeem ;
Kammakakam, Irshad ;
Falath, Wail .
MATERIALS ADVANCES, 2021, 2 (06) :1821-1871
[4]   Harnessing the Noncovalent Interactions of DNA Backbone with 2D Silicate Nanodisks To Fabricate Injectable Therapeutic Hydrogels [J].
Basu, Sayantani ;
Pacelli, Settimio ;
Feng, Yi ;
Lu, Qinghua ;
Wang, Jinxi ;
Paul, Arghya .
ACS NANO, 2018, 12 (10) :9866-9880
[5]  
Breaker R R, 1994, Chem Biol, V1, P223, DOI 10.1016/1074-5521(94)90014-0
[6]   In Vivo Behavior of Ultrasmall Spherical Nucleic Acids [J].
Callmann, Cassandra E. ;
Vasher, Matthew K. ;
Das, Anindita ;
Kusmierz, Caroline D. ;
Mirkin, Chad A. .
SMALL, 2023, 19 (24)
[7]   Covalent and Non-Covalent DNA-Gold-Nanoparticle Interactions: New Avenues of Research [J].
Carnerero, Jose M. ;
Jimenez-Ruiz, Aila ;
Castillo, Paula M. ;
Prado-Gotor, Rafael .
CHEMPHYSCHEM, 2017, 18 (01) :17-33
[8]   A Redox-Activatable DNA Nanodevice for Spatially-Selective, AND-Gated Imaging of ATP and Glutathione in Mitochondria [J].
Chai, Xin ;
Fan, Zetan ;
Yu, Ming-Ming ;
Zhao, Jian ;
Li, Lele .
NANO LETTERS, 2021, 21 (23) :10047-10053
[9]   Artificial Immune Cell, AI-cell, a New Tool to Predict Interferon Production by Peripheral Blood Monocytes in Response to Nucleic Acid Nanoparticles [J].
Chandler, Morgan ;
Jain, Sankalp ;
Halman, Justin ;
Hong, Enping ;
Dobrovolskaia, Marina A. ;
Zakharov, Alexey, V ;
Afonin, Kirill A. .
SMALL, 2022, 18 (46)
[10]   Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids [J].
Chen, Min ;
Song, Zhen ;
Yang, Xiqin ;
Song, Zhiling ;
Luo, Xiliang .
BIOSENSORS & BIOELECTRONICS, 2022, 206